K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

Bài 1: Cho đa thức: f(x) = x + 7x2 – 6x3 + 3x4 + 2x2 + 6x – 2x4 + 1. 1. Thu gọn, rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x. 2. Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất. 3. Tình f(-1), f(0), f(1), f(-a). Bài 2: Cho các đa thức: A = 5x2 – 3xy + 7y2 , B = 6x2 – 8xy + 9y2 1. Tính P = A + B và Q = A – B. 2. Tính giá trị của đa thức M = P – Q tại x...
Đọc tiếp

Bài 1: Cho đa thức: f(x) = x + 7x2 – 6x3 + 3x4 + 2x2 + 6x – 2x4 + 1.

1. Thu gọn, rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x.

2. Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất.

3. Tình f(-1), f(0), f(1), f(-a).

Bài 2: Cho các đa thức:

A = 5x2 – 3xy + 7y2 , B = 6x2 – 8xy + 9y2

1. Tính P = A + B và Q = A – B.

2. Tính giá trị của đa thức M = P – Q tại x = -1 và y = -2.

3. Cho đa thức N = 3x2 – 16xy + 14y2. Chứng minh đa thức T = M – N luôn nhận giá trị không âm với mọi giá trị của x và y.

Bài 3: Thu gọn các đa thức sau và tìm bậc của chúng:

1. 2x2y5 – xyz + y3 + 3x2y5 – 2xyz + 7y3 – 4x2y5

2. x3y4 – x2y2 + y6 – 5x3y4 – 6x2y2 + 3y6 – 5x2y2 + 4y6.

Bài 4: Tìm đa thức M sao cho:

1. M + (x3 – 2xy2 + y3) = x3 + 5xy2 – y3

2. M – (xy3 – 2xy + x2 + 5) = xy3 + 5xy – 2x2 – 6

3. (x4 – y + y2 + xy) – M = x4 + 7y – 6 + xy

Bài 5: Tìm một đa thức P sao cho tổng của P với đa thức:

-x2y5 + 3y3 – 3x3 + x3y + 2015 là một đa thức 0.

Bài 6 :Cho x – y = 1. Chứng minh rằng giá trị của mỗi đa thức sau là một hằng số:

1. P = x2 – xy – x + xy2 – y3 – y2 + 5

2. Q = x3 – x2y – x2 + xy2 – y3 – y2 + 5x – 5y – 2015.

Bài 7:Cho các đa thức: F(x) = x3 – 3x2 + 6x – 8, G(x) = – 6x2 + x3 – 8 + 12x

1. Tính F(x) + G(x)

2. Tính F(1)

3. Tìm x để F(x) – G(x) = 0.

Bài 8: Cho các đa thức sau: P(x) = 5x4 – 3x2 + 9x3 – 2x4 + 4 + 5x,

Q(x) = – 10x + 5 + 8x3 + 3x2 + x3.

1. Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm của biến.

2. Tính P(x) + Q(x)

3. Tính P(x) – Q(x).

Một sô bài toán hay

1
5 tháng 5 2020

Bài 1:1)
f(x)=x+7x26x3+3x4+2x2+6x2x4+1=7x+9x2+x46x3+1f(x)=x+7x2−6x3+3x4+2x2+6x−2x4+1=7x+9x2+x4−6x3+1
Sắp xếp: x46x3+9x2+7x+1x4−6x3+9x2+7x+1
2) bậc đa thức : 4
hệ số tự do : 1
hệ số cao nhất : 9
3)f(1)=x46x3+9x2+7x+1=(1)46.(1)3+9.(1)2+7.(1)+1=1(6)+9+(7)+1=10f(−1)=x4−6x3+9x2+7x+1=(−1)4−6.(−1)3+9.(−1)2+7.(−1)+1=1−(−6)+9+(−7)+1=10
mấy câu kia tương tự
Bài 2:
1.P=A+B=5x23xy+7y2+6x28xy+9y2=11x211xy+16y2P=A+B=5x2−3xy+7y2+6x2−8xy+9y2=11x2−11xy+16y2

Q=AB=5x23xy+7y2(6x28xy+9y2)=5x23xy+7y26x2+8xy9y2=x2+5xy2y2Q=A−B=5x2−3xy+7y2−(6x2−8xy+9y2)=5x2−3xy+7y2−6x2+8xy−9y2=−x2+5xy−2y2
2.M=PQ=11x211xy+16y2(x2+5xy2y2)=11x211xy+16y2+x25xy+2y2=12x216xy+18y2M=P−Q=11x2−11xy+16y2−(−x2+5xy−2y2)=11x2−11xy+16y2+x2−5xy+2y2=12x2−16xy+18y2
Thay x=-1 và y=-2 có:
12x216xy+18y2=12.(1)216.(1).(2)+18.(2)2=5212x2−16xy+18y2=12.(−1)2−16.(−1).(−2)+18.(−2)2=52

3.T=MN=12x216xy+18y23x2+16xy14y2=9x2+4y2T=M−N=12x2−16xy+18y2−3x2+16xy−14y2=9x2+4y2
Ta có : 9x2 >0 và 4y2 >0 => T>0
=> T luôn nhận giá trị dương với mọi giá trị x, y