Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt: a2 + b2 > = (a + b)2/2
Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b
Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
CM đúng <=> (a + b)2 > = 4ab
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)
Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)
Dấu"=" xảy ra <=> x = y = 1/2
Vậy minA = 18/ <=> x = y = 1/2
Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)
Áp dụng ta được :
\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)
\(x+y\ge2\sqrt{xy}\Rightarrow\sqrt{xy}\le\dfrac{1}{2}\Rightarrow xy\le\dfrac{1}{4}\Rightarrow\dfrac{1}{xy}\ge4\)
\(A=1+\dfrac{2}{x}+\dfrac{1}{x^2}+1+\dfrac{2}{y}+\dfrac{1}{y^2}=2+2\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(\Rightarrow A\ge2+\dfrac{8}{x+y}+\dfrac{2}{xy}\ge18\)
\(\Rightarrow A_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
. P= x^2 +1/ x^2+ 2 +y^2+ 1/y^2 +2 (*) áp dụng bđt cosi cho các số dương x^2; y^2 và 1/x^2 và 1/y^2 được x^2+y^2 >= 2xy (1) và 1/X^2 +1/y^2 >=2/xy (2) thay vào (*) P >= 4+2xy+2/(xy) (**) Do x,y>0 áp dụng bđt cosi cho 2 số dương 2xy và 2/ (xy) ta được 2xy+2/(xy)>=2 căn (2xy . 2/(xy))=2 (3) thay trở lại (**) được P>= 4+2=6 Dấu bằng sảy ra khi dấu bằng ở (1)(2)(3) cùng đồng thời sảy ra tức là (1) x=y; (2) 1/x=1/y ;(3) xy=1/(xy) => x=y Vậy GTNN của biểu thức là 6 sảy ra khi x=y
2, Ta có: A= \(\left(1+\dfrac{1}{x}\right)^2+\left(1+\dfrac{1}{y}\right)^2=1+\dfrac{2}{x}+\dfrac{1}{x^2}+1+\dfrac{2}{y}+\dfrac{1}{y^2}\)
\(=2+2\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{x^2}+\dfrac{1}{y^2}=2+2.\dfrac{x+y}{xy}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\)
\(=2+2.\dfrac{1}{xy}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\) ( do x+y=1)
Ta cm được BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với a, b >0
Áp dụng BĐT ta được: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{x^2+y^2}\) ( do x, y >0)
=> \(A=2+2.\dfrac{1}{xy}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2+2.\dfrac{1}{xy}+\dfrac{4}{x^2+y^2}=2+\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}\)
Áp dụng BĐT ta được: \(\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}=\dfrac{16}{\left(x+y\right)^2}=\dfrac{16}{1}=16\) ( do x+y=1)
=> \(A\ge2+\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}\ge2+16=18\)
dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
vậy GTNN của A = 18 khi \(x=y=\dfrac{1}{2}\)
Bài 1:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(x+2017\geq 2\sqrt{x.2017}\Rightarrow (x+2017)^2\geq 8068x\)
\(\Rightarrow M=\frac{x}{(x+2017)^2}\leq \frac{x}{8068x}=\frac{1}{8068}\)
Vậy GTLN của \(M=\frac{1}{8068}\)
Dấu "=" xảy ra khi $x=2017$
Bài 2:
Thay $y=1-x$ vào biểu thức $M$ ta có:
\(M=5x^2+y^2=5x^2+(1-x)^2\)
\(=5x^2+(x^2-2x+1)=6x^2-2x+1\)
\(=6(x^2-\frac{1}{3}x+\frac{1}{36})+\frac{5}{6}\)
\(=6(x-\frac{1}{6})^2+\frac{5}{6}\geq 6.0+\frac{5}{6}=\frac{5}{6}\)
Vậy GTNN của $M$ bẳng $\frac{5}{6}$ khi \(x=\frac{1}{6}; y=\frac{5}{6}\)
\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=x^2y^2+\frac{1}{x^2y^2}+2\)
Áp dụng BĐT Cô-si cho 2 số không âm ta có:
\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)
\(\frac{255}{256x^2y^2}\ge\frac{255}{256\cdot\frac{\left(x+y\right)^4}{16}}=\frac{255}{256\cdot\frac{1}{16}}=\frac{255}{16}\)
\(\Rightarrow P\ge\frac{1}{8}+\frac{255}{16}+2\ge\frac{289}{16}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Câu hỏi của Uyên Nguyễn - Toán lớp 9 | Học trực tuyến