\(\dfrac{1-21a}{x+7}=1+3a\) (a là tham số)

Tìm giá trị của a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

2, Ta có: A= \(\left(1+\dfrac{1}{x}\right)^2+\left(1+\dfrac{1}{y}\right)^2=1+\dfrac{2}{x}+\dfrac{1}{x^2}+1+\dfrac{2}{y}+\dfrac{1}{y^2}\)

\(=2+2\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{x^2}+\dfrac{1}{y^2}=2+2.\dfrac{x+y}{xy}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\)

\(=2+2.\dfrac{1}{xy}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\) ( do x+y=1)

Ta cm được BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với a, b >0

Áp dụng BĐT ta được: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{x^2+y^2}\) ( do x, y >0)

=> \(A=2+2.\dfrac{1}{xy}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2+2.\dfrac{1}{xy}+\dfrac{4}{x^2+y^2}=2+\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}\)

Áp dụng BĐT ta được: \(\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}=\dfrac{16}{\left(x+y\right)^2}=\dfrac{16}{1}=16\) ( do x+y=1)

=> \(A\ge2+\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}\ge2+16=18\)

dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

vậy GTNN của A = 18 khi \(x=y=\dfrac{1}{2}\)

1 tháng 2 2020

\(ĐKXĐ:x\ne7\)

\(\frac{1-21a}{x+7}=1-3a\)

\(\Rightarrow1-21a=\left(1-3a\right)\left(x+7\right)\)

\(\Rightarrow1-21a=x-3ax+7-21a\)

\(\Rightarrow x-3ax=-6\)

\(\Rightarrow x\left(1-3a\right)=-6\)

Để x âm thì 1 - 3a dương hay \(1-3a>0\Leftrightarrow a< \frac{1}{3}\)

Vậy với mọi \(a< \frac{1}{3}\)thì phương trình có nghiệm âm.

28 tháng 5 2018

bn copy ghê

4 tháng 5 2017

a) giải phương trình

\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2

=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)

=>2x2 - 3x - 2 = 2(x2 - 4)

<=>2x2 -3x - 2 = 2x2 - 8

<=>2x2 - 2x2 - 3x = -8 + 2

<=>-3x = -6

<=> x = 2

Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán

b) Ta phải giải phương trình

\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)

=>x = \(\dfrac{-7}{38}\)

c) Ta phải giải phương trình

\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)

không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán

24 tháng 4 2017

Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

GV
24 tháng 4 2017

Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)

14 tháng 1 2021

tao chơi hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy tao đó

14 tháng 1 2021

Áp dụng bđt: a2 + b2 > = (a + b)2/2

Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0

<=> (a - b)> = 0 (luôn đúng với mọi a,b

Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

CM đúng <=> (a + b)2 > = 4ab

<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)

Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)

Dấu"=" xảy ra <=> x = y = 1/2

Vậy minA = 18/ <=> x = y = 1/2

24 tháng 6 2017

Phân thức đại số

22 tháng 8 2017

Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)

Áp dụng ta được : 

\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)