K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

a/ Áp dụng BĐT Bunhiacopxki :

\(5^2=\left(1.x+2.y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\Leftrightarrow5A\ge25\Leftrightarrow A\ge5\)

Đẳng thức xảy ra khi \(\begin{cases}x=\frac{y}{2}\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=2\end{cases}\)

Vậy MaxA = 5 <=> (x;y) = (1;2)

b/ Áp dụng BĐT Cauchy : \(5=x+2y\ge2\sqrt{2xy}\Rightarrow xy\le\frac{25}{8}\)

Đẳng thức xảy ra khi \(\begin{cases}x=2y\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{5}{2}\\y=\frac{5}{4}\end{cases}\)

Vậy MaxA = 25/8 <=> (x;y) = (5/2;5/4)

9 tháng 5 2016

Câu nào?

9 tháng 5 2016

câu trả lời đây đọc đi...vui

4 tháng 8 2016

\(a,\left(3x+y\right)\left(9x^2-3xy+y^2\right)=27x^3+y^3\)
\(b,\left(2x-5\right)\left(4x^2+10x+25\right)=8x^3-125\)

26 tháng 12 2016

a)so 2 cuoi

27 tháng 12 2016

ban co tim dc 2 chu so tan cung kngoam

9 tháng 1 2017

f(x) = (x2- x + 1)2016 = a4032 . x4032 + a4031 . x4031 +.....+ a1 . x + a0

=>f(1)=\(\left(1^2-1+1\right)^{2016}=a_{4032}+a_{4031}+......+a_1+a_0\)=1

vậy tổng các hệ số bằng 1

3 tháng 4 2017

\(x^4+2002x^2+2001x+2002\)

\(=x^4+x^2+1+2001x^2+2001x+2001\)

\(=\left(x^4+2x^2+1\right)-x^2+2001\left(x^2+x+1\right)\)

\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2001\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+1-x+2001\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2002\right)\)

3 tháng 4 2017

\(x^4+2007x^2-2006x+2007\)

\(=x^4+2x^2+1-x^2+2006\left(x^2-x+1\right)\)

\(=\left(x^2+1\right)^2-x^2+2006\left(x^2-x+1\right)\)

\(=\left(x^2+1+x\right)\left(x^2+1-x\right)+2006\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1+2006\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+2007\right)\)

14 tháng 11 2016

ko cho thêm điều kiện j ak bn?

 

14 tháng 11 2016

xy + y + x = 3

<=> y(x+1) + (x+1) = 4

<=> (x+1)(y+1) = 4

Ta có bảng sau:

x+11-12-24-4
y+14-42-21-1
x0-21-33-5
y3-51-30-2

Vậy x \(\in\) {0;-2;1;-3;3;-5}

\(\Leftrightarrow\left(2x^2+x\right)^2-\left(2x^2+x\right)-3\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x-1\right)\left(2x^2+x-3\right)=0\)

\(\Leftrightarrow\left(2x^2+2x-x-1\right)\left(2x^2+3x-2x-3\right)=0\)

=>(x+1)(2x-1)(2x+3)(x-1)=0

\(\Leftrightarrow x\in\left\{-1;\dfrac{1}{2};-\dfrac{3}{2};1\right\}\)