K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

Câu nào?

9 tháng 5 2016

câu trả lời đây đọc đi...vui

16 tháng 9 2017

\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)

\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)

\(\Rightarrow5x^2-3=5x^2+5x\)

\(\Rightarrow-3=5x\)

\(\Rightarrow5x=-3\)

\(\Rightarrow x=-\dfrac{3}{5}\)

Vậy ....

P/s : Làm bừa !

7 tháng 11 2016

a/ Áp dụng BĐT Bunhiacopxki :

\(5^2=\left(1.x+2.y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\Leftrightarrow5A\ge25\Leftrightarrow A\ge5\)

Đẳng thức xảy ra khi \(\begin{cases}x=\frac{y}{2}\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=2\end{cases}\)

Vậy MaxA = 5 <=> (x;y) = (1;2)

b/ Áp dụng BĐT Cauchy : \(5=x+2y\ge2\sqrt{2xy}\Rightarrow xy\le\frac{25}{8}\)

Đẳng thức xảy ra khi \(\begin{cases}x=2y\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{5}{2}\\y=\frac{5}{4}\end{cases}\)

Vậy MaxA = 25/8 <=> (x;y) = (5/2;5/4)

14 tháng 11 2016

ko cho thêm điều kiện j ak bn?

 

14 tháng 11 2016

xy + y + x = 3

<=> y(x+1) + (x+1) = 4

<=> (x+1)(y+1) = 4

Ta có bảng sau:

x+11-12-24-4
y+14-42-21-1
x0-21-33-5
y3-51-30-2

Vậy x \(\in\) {0;-2;1;-3;3;-5}

\(S=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(=\dfrac{3\cdot\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\cdot\dfrac{1}{2}}{2a^2+2b^2+2c^2-2ab-2bc-2ac}=\dfrac{3}{2}\)

3 tháng 4 2017

\(x^4+2002x^2+2001x+2002\)

\(=x^4+x^2+1+2001x^2+2001x+2001\)

\(=\left(x^4+2x^2+1\right)-x^2+2001\left(x^2+x+1\right)\)

\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2001\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+1-x+2001\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2002\right)\)

3 tháng 4 2017

\(x^4+2007x^2-2006x+2007\)

\(=x^4+2x^2+1-x^2+2006\left(x^2-x+1\right)\)

\(=\left(x^2+1\right)^2-x^2+2006\left(x^2-x+1\right)\)

\(=\left(x^2+1+x\right)\left(x^2+1-x\right)+2006\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1+2006\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+2007\right)\)

20 tháng 10 2016

ĐKXĐ: \(a;b;c\in Z\)

Xét hiệu: (a3 + b3 + c3) - (a + b + c)

= (a3 - a) + (b3 - b) + (c3 - c)

= a.(a2 - 1) + b.(b2 -1) + c.(c2 - 1)

= (a - 1).a.(a + 1) + (b - 1).b.(b + 1) + (c - 1).c.(c + 1)

Vì (a - 1).a.(a + 1); (b - 1).b.(b + 1) và (c - 1).c.(c + 1) đều là tích 3 số nguyên liên tiếp nên mỗi tích này chia hết cho 2 và 3

Do (2;3)=1 nên mỗi tích này chia hết cho 6

\(\Rightarrow\left(a-1\right).a.\left(a+1\right)+\left(b-1\right).b.\left(b+1\right)+\left(c-1\right).c.\left(c+1\right)⋮6\)

hay \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

\(a+b+c=2016^{2016}⋮6\) nên \(a^3+b^3+c^3⋮6\left(đpcm\right)\)

 

21 tháng 10 2016

cảm ơn ạhiuhiu

9 tháng 1 2017

f(x) = (x2- x + 1)2016 = a4032 . x4032 + a4031 . x4031 +.....+ a1 . x + a0

=>f(1)=\(\left(1^2-1+1\right)^{2016}=a_{4032}+a_{4031}+......+a_1+a_0\)=1

vậy tổng các hệ số bằng 1