K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

em học lớp 9 lộn ngược nè! Dang Dang hỏi em thì hỏi cái đầu gối còn hơn

8 tháng 1 2017

\(\hept{\begin{cases}x+y+z\ge3\sqrt[z]{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\end{cases}\Rightarrow}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{\left(x+y+z\right)}\ge\frac{9}{6}=\frac{3}{2}\)đẳng thức khi x=x=z=2

27 tháng 3 2018
De qua
27 tháng 3 2018

Ai giải bài này nhanh giúp mình với, mình đang cần gấp 

NV
23 tháng 7 2020

\(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\ge6\sqrt[6]{\frac{x^2y^2z^2}{x^2y^2z^2}}=6\)

Dấu "=" xảy ra khi \(x=y=z\)

4 tháng 3 2019

ko hiểu

20 tháng 1 2017

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}x+y\ge2\sqrt{xy}\\\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\sqrt{xy.\frac{1}{xy}}\)

\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) ( đpcm )

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}x+y+z\ge3\sqrt{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt{\frac{1}{xyz}}\end{matrix}\right.\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\sqrt{xyz.\frac{1}{xyz}}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( đpcm )

21 tháng 1 2017

cũng đúng nhưng mình chưa hoc BĐT Cô-si

7 tháng 5 2019

a) sai đề.

Sửa:\(\frac{x}{y}+\frac{y}{x}\ge2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

Dấu " = " xảy ra <=> x=y

b) \(\left(x+y+2\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{2}\right)\ge9\)

Áp dụng BĐT AM-GM ta có:

\(\left(x+y+2\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{2}\right)\ge3.\sqrt[3]{2xy}.\frac{3}{\sqrt[3]{2xy}}=9\)

Dấu " = " xảy ra <=> x=y=2

13 tháng 9 2019

Áp dụng BĐT Cô si:

\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=2.2x=4x\)

\(\Rightarrow\frac{x^2}{y-1}\ge4x-4y+4\)

Tương tự: \(\frac{y^2}{x-1}\ge4y-4x+4\)

Cộng theo vế 2 BĐT trên với nhau ta thu được đpcm/

Đẳng thức xảy ra khi \(x=y=2\)