Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em học lớp 9 lộn ngược nè! Dang Dang hỏi em thì hỏi cái đầu gối còn hơn
\(\hept{\begin{cases}x+y+z\ge3\sqrt[z]{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\end{cases}\Rightarrow}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{\left(x+y+z\right)}\ge\frac{9}{6}=\frac{3}{2}\)đẳng thức khi x=x=z=2
Ai giải bài này nhanh giúp mình với, mình đang cần gấp
\(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\ge6\sqrt[6]{\frac{x^2y^2z^2}{x^2y^2z^2}}=6\)
Dấu "=" xảy ra khi \(x=y=z\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}x+y\ge2\sqrt{xy}\\\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\sqrt{xy.\frac{1}{xy}}\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) ( đpcm )
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}x+y+z\ge3\sqrt{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt{\frac{1}{xyz}}\end{matrix}\right.\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\sqrt{xyz.\frac{1}{xyz}}\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( đpcm )
a) sai đề.
Sửa:\(\frac{x}{y}+\frac{y}{x}\ge2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Dấu " = " xảy ra <=> x=y
b) \(\left(x+y+2\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{2}\right)\ge9\)
Áp dụng BĐT AM-GM ta có:
\(\left(x+y+2\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{2}\right)\ge3.\sqrt[3]{2xy}.\frac{3}{\sqrt[3]{2xy}}=9\)
Dấu " = " xảy ra <=> x=y=2
Áp dụng BĐT Cô si:
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=2.2x=4x\)
\(\Rightarrow\frac{x^2}{y-1}\ge4x-4y+4\)
Tương tự: \(\frac{y^2}{x-1}\ge4y-4x+4\)
Cộng theo vế 2 BĐT trên với nhau ta thu được đpcm/
Đẳng thức xảy ra khi \(x=y=2\)