Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunhiacopxki dạng phân thức:
\(VT=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\ge\frac{\left(\sqrt{2}.3\right)^2}{2\left(x+y+z\right)}=\frac{9}{x+y+z}\)
Dấu "=" khi x = y = z > 0
cũng là Cauchy-Schwarz dạng Engel nhưng làm khác idol :))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{\left(1+1+1\right)^2}{x+y+y+z+z+x}=\frac{9}{2\left(x+y+z\right)}\)
=> \(2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{9}{2\left(x+y+z\right)}\cdot2=\frac{9}{x+y+z}\left(đpcm\right)\)
Đẳng thức xảy ra <=> x=y=z
dễ dàng CM: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow3xyz\ge xy+yz+zx\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)
Áp dụng BĐT Cauchy ta có:
\(\frac{x^2}{y+2}+\frac{y+2}{9}+\frac{x}{3}\ge3\sqrt[3]{\frac{x^2}{y+2}.\frac{y+2}{9}.\frac{x}{3}}=x\)
CM tương tự với các phân số còn lại rồi cộng vế theo vế ta được:
\(P\ge x+y+z-\frac{x+2}{9}-\frac{y+2}{9}-\frac{z+2}{9}-\frac{x}{3}-\frac{y}{3}-\frac{z}{3}\)
\(=\frac{5}{9}\left(x+y+z\right)-\frac{2}{3}\)
Phải CM: \(\frac{5}{9}\left(x+y+z\right)-\frac{2}{3}\ge1\Leftrightarrow x+y+z\ge3\)
Mặt khác lại có: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Leftrightarrow x+y+z\ge\frac{9}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge\frac{9}{3}=3\)
Vậy \(x+y+z\ge3\)
Vậy BĐT ban đầu đã được CM
hay ...>=1
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Ta chứng minh bất đẳng thức sau: Vơi x.y >= 0 ta có \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) (*)
Thật vậy: (*) <=> \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\ge0\)
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\Leftrightarrow\frac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y.\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\Leftrightarrow\frac{\left(y-x\right).x\left(1+y^2\right)-\left(y-x\right).y\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right).\left(x\left(1+y^2\right)-y\left(1+x^2\right)\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\Leftrightarrow\frac{\left(y-x\right)\left(xy\left(y-x\right)-\left(y-x\right)\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
Luôn đúng vì: x; y > = 1 nên tích x.y > = 1 ....
Áp dụng (*) ta có:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
\(\frac{1}{1+x^2}+\frac{1}{1+z^2}\ge\frac{2}{1+xz}\)
\(\frac{1}{1+z^2}+\frac{1}{1+y^2}\ge\frac{2}{1+yz}\)
=> \(2.\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\right)\ge2.\left(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{xz}\right)\ge2.\left(\frac{1}{1+xyz}+\frac{1}{1+xyz}+\frac{1}{xyz}\right)\)
Vì xy x; y ; z > = 1 nên x.y .z > = x.y ; y.z; z.x
=> \(\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\right)\ge\frac{3}{1+xyz}\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
a) sai đề.
Sửa:\(\frac{x}{y}+\frac{y}{x}\ge2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Dấu " = " xảy ra <=> x=y
b) \(\left(x+y+2\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{2}\right)\ge9\)
Áp dụng BĐT AM-GM ta có:
\(\left(x+y+2\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{2}\right)\ge3.\sqrt[3]{2xy}.\frac{3}{\sqrt[3]{2xy}}=9\)
Dấu " = " xảy ra <=> x=y=2