Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nghiện garena ff à cho xin kb nick được ko ạ có thể ghi số id
Với x, y, z >0, Có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)
=> Đặt: x + y+z =t => \(t\ge3\)
\(A=\frac{x^2}{1+x}+\frac{y^2}{1+y}+\frac{z^2}{1+z}\ge\frac{\left(x+y+z\right)^2}{3+x+y+z}\)
\(=\frac{t^2}{t+3}=t-3+\frac{9}{t+3}\)
\(=\left(\frac{t+3}{4}+\frac{9}{t+3}\right)+\frac{3\left(t+3\right)}{4}-6\ge2\sqrt{\frac{t+3}{4}.\frac{9}{t+3}}+3.\frac{\left(3+3\right)}{4}-6\)
\(=2.\frac{3}{2}+\frac{9}{2}-6=\frac{3}{2}\)
"=" xảy ra <=> x = y = z =1
*)Cách cho THCS Yahoo Hỏi & Đáp
*)Cách cho THPT
Áp dụng C-S dạng Engel \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{3\sqrt[3]{xyz}}=\frac{3}{\sqrt[3]{xyz}}\)
Vậy chứng minh \(\frac{3}{\sqrt[3]{xyz}}>\frac{18}{xyz+2}\Leftrightarrow xyz-6\sqrt[3]{xyz}+2>0\)
Đặt \(t=\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow0< t\le\frac{1}{3}\)
Hàm số \(f\left(t\right)=t^3-6t+2\) nghịch biến trên (\(0;\frac{1}{3}\)]
\(f\left(t\right)\ge f\left(\frac{1}{3}\right)=\frac{1}{27}>0\) (ĐPCM)
Ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{z+y+z}=9=\dfrac{18}{2}>\dfrac{18}{xyz+2}\)
Ta chứng minh bất đẳng thức sau: Vơi x.y >= 0 ta có \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) (*)
Thật vậy: (*) <=> \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\ge0\)
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\Leftrightarrow\frac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y.\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\Leftrightarrow\frac{\left(y-x\right).x\left(1+y^2\right)-\left(y-x\right).y\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right).\left(x\left(1+y^2\right)-y\left(1+x^2\right)\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\Leftrightarrow\frac{\left(y-x\right)\left(xy\left(y-x\right)-\left(y-x\right)\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
Luôn đúng vì: x; y > = 1 nên tích x.y > = 1 ....
Áp dụng (*) ta có:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
\(\frac{1}{1+x^2}+\frac{1}{1+z^2}\ge\frac{2}{1+xz}\)
\(\frac{1}{1+z^2}+\frac{1}{1+y^2}\ge\frac{2}{1+yz}\)
=> \(2.\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\right)\ge2.\left(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{xz}\right)\ge2.\left(\frac{1}{1+xyz}+\frac{1}{1+xyz}+\frac{1}{xyz}\right)\)
Vì xy x; y ; z > = 1 nên x.y .z > = x.y ; y.z; z.x
=> \(\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\right)\ge\frac{3}{1+xyz}\)
Cho x,y,z>0; \(x^2+y^2+z^3=\frac{5}{3}\)
CMR: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\le\frac{1}{xyz}\)
Dễ dàng chứng minh được với mọi \(x,y>0\) thì ta luôn có:
\(x^3+y^3\ge xy\left(x+y\right)\) \(\left(\text{*}\right)\)
Thật vậy, xét hiệu \(x^3+y^3-xy\left(x+y\right)=x^3-x^2y+-xy^2+y^3=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)
\(x^3+y^3-xy\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\) (vì \(\left(x-y\right)^2\ge0\) với mọi \(x,y\) và \(x+y>0\))
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x-y=0\) \(\Leftrightarrow\) \(x=y\)
Vậy, bất đẳng thức \(\left(\text{*}\right)\) luôn đúng với mọi \(x,y>0\)
Do đó, từ \(\left(\text{*}\right)\) ta suy ra:
\(x^3+y^3+xyz\ge xy\left(x+y\right)+xyz\) (do \(x,y,z>0\))
\(\Leftrightarrow\) \(x^3+y^3+xyz\ge xy\left(x+y+z\right)\)
\(\Leftrightarrow\) \(x^3+y^3+1\ge xy\left(x+y+z\right)\) (do \(xyz=1\))
Khi đó, vì hai vế của bđt trên cùng dấu nên ta lấy nghịch đảo hai vế và đổi chiều bất đẳng thức, tức là:
\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\) \(\left(1\right)\)
\(\Leftrightarrow\) \(\frac{1}{x^3+y^3+1}\le\frac{xyz}{xy\left(x+y+z\right)}\) (do \(xyz=1\))
\(\Leftrightarrow\) \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)
Hoàn toàn tương tự với vòng hoán vị \(x\) \(\rightarrow\) \(y\) \(\rightarrow\) \(z\), ta cũng chứng minh được:
\(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\) \(\left(2\right)\) và \(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\) \(\left(3\right)\)
Cộng từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z=1\)
ko hiểu