Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
a, x^3-y^2-y=1/3
=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0
=> x > 0
Tương tự : y,z đều > 0
Tk mk nha
ta có hpt
<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)
Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)
Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)
=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)
=>\(y\ge z\) (2)
với y>= z, từ pt(2) =>z>=x (3)
Từ 91),(2),(3)
=> x=y=z>0 (ĐPCM)
Với x=y=z>0, thay vào pt(1), Ta có
\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)
<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)
<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V
^_^
Bạn CM x=y=z=1
Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2
Cuối cùng bạn sẽ kết luận:
Vì 1/2 ≤ 1/2
Nên ...(biểu thức)...≤1/2
Cho x,y,z>0; \(x^2+y^2+z^3=\frac{5}{3}\)
CMR: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\le\frac{1}{xyz}\)
Áp dụng BĐT AM-GM,ta có:
\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+1\ge2y\end{cases}}\)
\(\Rightarrow\frac{1}{x^2+2y^2+3}\le\frac{1}{2xy+2y+2}\)
Chứng minh tương tự,ta có:
\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2yz+2z+2}\)
\(\frac{1}{z^2+2x^2+3}\le\frac{1}{2zx+2x+2}\)
Cộng vế theo vế của các bất đẳng thức,ta có được:
\(VT\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
Mặt khác,ta lại có được:
\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\)
\(=\frac{1}{xy+y+1}+\frac{xy}{xy+y+1}+\frac{y}{xy+y+1}\)
\(=1\)
\(\Rightarrow\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot1=\frac{1}{2}\left(đpcm\right)\)