Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge0\)
\(C=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
a) \(C>9\)
<=> \(1-\frac{3}{\sqrt{x}+1}>9\)
<=> \(\frac{3}{\sqrt{x}+1}< -8< 0\)vô lí
=> Không tồn tại x
b)
\(C< \frac{1}{2}\)
<=> \(1-\frac{3}{\sqrt{x}+1}< \frac{1}{2}\)
<=> \(\frac{3}{\sqrt{x}+1}>\frac{1}{2}\)
<=> \(\frac{\sqrt{x}+1}{3}< 2\)( vì \(\sqrt{x}+1>0\))
<=> \(\sqrt{x}< 5\)
<=> \(0\le x\le25\)( tm đk)
Vậy:...
c)
\(C=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0;\forall x\)
khi đó: \(\sqrt{x}+1\ge1\)=> \(\frac{3}{\sqrt{x}+1}\le3\)=> \(C\ge1-3=-2\)
"=" xảy ra <=> x = 0.
Vậy gtnnC = -2 tại x = 0
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne2\end{cases}}\)
\(P=\left(1-\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\right).\left(1+\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\right)\)
\(=\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)=1-x\)
b. \(P\ge0\Rightarrow1-x\ge0\Rightarrow x\le1\)
Vậy với \(x\le1\)thì P có giá trị không âm
a,Nếu \(x\ge3\Rightarrow f\left(x\right)=2-\left(x-3\right)=5x\)
Có \(A\left(3;2\right),B\left(5;0\right)\) thuộc đồ thị hàm số
Nếu \(x< 3\Rightarrow f\left(x\right)=2-\left(3-x\right)=x-1\)
Có \(D\left(1,0\right),C\left(0,-1\right)\) thuộc đồ thị hàm số
b,\(f\left(x\right)>m\Rightarrow5-x>m\) và \(x-1>m\)
\(\Leftrightarrow m+1< x< 5-m\)
\(f\left(x\right)< 1\Leftrightarrow5-x< 1\) hoặc \(x-1< 1\)
\(\Leftrightarrow\left[{}\begin{matrix}x>4\\x< 2\end{matrix}\right.\)
P/s: Bạn tự vẽ nhé!
Giúp mik vs mn ơi
a, x = \(\sqrt{x}\) (đk x > 0)
⇔ x2 = x ⇔ x2 - x = 0 ⇔ x(x-1)= 0 ⇔ x =0 (loại) hoặc x = 1
vậy x = 1
b, x > \(\sqrt{x}\) (đk X > 0)
⇔ x2 > x ⇔ x2 - x > 0 ⇔ x (x-1)> 0 ⇔ x >1
c. x < \(\sqrt{x}\) (đk x >0)
⇔ x2 < x ⇔ x(x-1)<0 ⇔ 0<x<1