Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
A=\(\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
A= \(\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)=\(\frac{2x-2\sqrt{x}-\sqrt{x}+1}{x-1}=\frac{2\sqrt{x}-1}{x+1}\)
Để A=1/2 thì
\(\frac{2\sqrt{x}-1}{x+1}=\frac{1}{2}\)
nhân chéo ta đc pt \(x-4\sqrt{x}+3=0\)
giải pt ta đc x=1 (loại) hoặc x= 9
vậy x=9 TM
Để A<1 thì \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\Leftrightarrow2\sqrt{x}-1< \sqrt{x}+1\Leftrightarrow\sqrt{x}< 2\)
=> x<4
vậy vs 0\(\le x< 4\) và x khác 1 TM
Mình nghĩ thế này ạ
a) Với \(x\ge0,x\ne1\)ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-1x}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-\sqrt{x}-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Kết luận :
\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)
\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
a.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\)
\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)
\(\Leftrightarrow3>2\)
Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)
Lát mình giải 2 câu kia,di ăn com cái
b.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)
\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)
\(\Leftrightarrow x>0\)
Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)
c.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)
\(\Leftrightarrow x-4\sqrt{x}+5< 0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)
Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)
\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)
\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)
\(4,A=x+\sqrt{x}+1\)
\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi :
\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)
Vậy Min A = 3/4 khi căn x = -1/2
ĐK: \(x\ge0\)
\(C=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
a) \(C>9\)
<=> \(1-\frac{3}{\sqrt{x}+1}>9\)
<=> \(\frac{3}{\sqrt{x}+1}< -8< 0\)vô lí
=> Không tồn tại x
b)
\(C< \frac{1}{2}\)
<=> \(1-\frac{3}{\sqrt{x}+1}< \frac{1}{2}\)
<=> \(\frac{3}{\sqrt{x}+1}>\frac{1}{2}\)
<=> \(\frac{\sqrt{x}+1}{3}< 2\)( vì \(\sqrt{x}+1>0\))
<=> \(\sqrt{x}< 5\)
<=> \(0\le x\le25\)( tm đk)
Vậy:...
c)
\(C=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0;\forall x\)
khi đó: \(\sqrt{x}+1\ge1\)=> \(\frac{3}{\sqrt{x}+1}\le3\)=> \(C\ge1-3=-2\)
"=" xảy ra <=> x = 0.
Vậy gtnnC = -2 tại x = 0