Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD có
M là trung điểm của AB(gt)
Q là trung điểm của AD(gt)
Do đó: MQ là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔCBD có
N là trung điểm của BC(gt)
P là trung điểm của CD(gt)
Do đó: NP là đường trung bình của ΔCBD(Định nghĩa đường trung bình của tam giác)
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà AC=BD(gt)
và \(NP=\dfrac{BD}{2}\)(cmt)
nên MN=NP
Xét tứ giác MQPN có
MQ//NP(cmt)
MQ=NP(cmt)
Do đó: MQPN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành MQPN có MN=NP(cmt)
nên MQPN là hình thoi(Dấu hiệu nhận biết hình thoi)
Ta có: MQPN là hình thoi(cmt)
nên MP\(\perp\)QN(Hai đường chéo của hình thoi MQPN)
A B C D M N F E G H I K
Gọi G,H,K lần lượt là trung điểm các cạnh AB,CD,AC. Giao điểm của MG và NH là I.
Ta thấy \(\Delta\)CDN cân tại N có H là trung điểm cạnh CD => NH vuông góc CD => IH vuông góc CD
Mà EK là đường trung bình trong \(\Delta\)ACD nên IH vuông góc EK (1)
Dễ dàng chứng minh tứ giác EHFG là hình thoi => EF vuông góc GH (2)
Từ (1) và (2) suy ra ^IHG = ^KEF (Vì 2 góc này cùng phụ với góc hợp bởi EF và IH)
Tương tự ^IGH = ^KFE. Từ đó \(\Delta\)GIH ~ \(\Delta\)FKE (g.g) => \(\frac{IG}{IH}=\frac{KF}{KE}=\frac{AB}{CD}=\frac{BG}{CH}\)
Ta lại có \(\Delta\)MGB ~ \(\Delta\)NHC (g.g) => \(\frac{BG}{CH}=\frac{MG}{NH}\). Do vậy \(\frac{IG}{IH}=\frac{MG}{NH}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)MIN ta được GH // MN
Mà EF vuông góc GH (cmt) nên EF vuông góc MN (đpcm).
, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@
Ta có
\(MN\perp BC;AB\perp BC\) => MN//AB \(\Rightarrow\frac{MN}{AB}=\frac{CM}{CA}\) (Talet trong tam giác)
\(MP\perp AD;CD\perp AD\) => MP//CD \(\Rightarrow\frac{MP}{CD}=\frac{AM}{CA}\) (Talet trong tam giác)
\(\Rightarrow\frac{MN}{AB}+\frac{MP}{CD}=\frac{CM}{CA}+\frac{AM}{CA}=\frac{CA}{CA}=1\left(dpcm\right)\)