Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
A B C D M N E Q F P K S
a) Dễ thấy PE là đường trung bình của \(\Delta ABD\)\(\Rightarrow PE=\frac{1}{2}BD\)
Tương tự : \(QE=\frac{1}{2}AC;QF=\frac{1}{2}BD;PF=\frac{1}{2}AC\)
Theo bài toán, BD = AC nên \(PE=EQ=QF=PF\)
Suy ra PEQF là hình thoi
b) Gọi K là trung điểm của BD . Đường thẳng ME cắt NF tại S
Vì PEQF là hình thoi nên \(EF\perp PQ\)( * )
Xét \(\Delta KQP\)và \(\Delta SFE\)có :
\(ME\perp AB\) ; \(PK//AB\)\(\Rightarrow ME\perp PK\)
Tương tự : \(NF\perp QK\)
\(\Rightarrow\Delta KQP\approx\Delta SFE\)( góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{KP}{KQ}=\frac{AB}{CD}\)( 1 )
Vì \(\Delta MAB\approx\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đồng dạng bằng tỉ số đường cao ) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{SE}{SF}=\frac{ME}{NF}\Rightarrow EF//MN\)( ** )
Từ ( * ) và ( ** ) suy ra : \(PQ\perp MN\)
Gọi E và F là trung điểm của AB và DC tương ứng.
Ta cm 2 vấn đề sau:
1) EF vuông góc với PQ
2) EF // MN
Sơ lược hướng đi là như vậy nha, mai chị sẽ đăng bài cụ thể nhé
Hình vẽ thì bạn tự dựng nha.
Gọi E,F là trung điểm của AB,CD tương ứng
Lần lượt cm các điều sau:
Tương tự:
Cộng theo vế (1) và (2) suy ra
A B C D M N F E G H I K
Gọi G,H,K lần lượt là trung điểm các cạnh AB,CD,AC. Giao điểm của MG và NH là I.
Ta thấy \(\Delta\)CDN cân tại N có H là trung điểm cạnh CD => NH vuông góc CD => IH vuông góc CD
Mà EK là đường trung bình trong \(\Delta\)ACD nên IH vuông góc EK (1)
Dễ dàng chứng minh tứ giác EHFG là hình thoi => EF vuông góc GH (2)
Từ (1) và (2) suy ra ^IHG = ^KEF (Vì 2 góc này cùng phụ với góc hợp bởi EF và IH)
Tương tự ^IGH = ^KFE. Từ đó \(\Delta\)GIH ~ \(\Delta\)FKE (g.g) => \(\frac{IG}{IH}=\frac{KF}{KE}=\frac{AB}{CD}=\frac{BG}{CH}\)
Ta lại có \(\Delta\)MGB ~ \(\Delta\)NHC (g.g) => \(\frac{BG}{CH}=\frac{MG}{NH}\). Do vậy \(\frac{IG}{IH}=\frac{MG}{NH}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)MIN ta được GH // MN
Mà EF vuông góc GH (cmt) nên EF vuông góc MN (đpcm).
cách 2, câu b/
Gọi giao của AC và BD là I, chứng minh được DI= CI
mà ED =CF
=> IE= IF
mặt khác, tam giác IEF và tam giác IDC cùng cân tại I nên EF // CD
cách 1, câu b/
Gọi N là giao EF và BC
dùng đường trung bình và tiên đề Euclid, chứng minh được E,F,N thẳng
>>> đpcm
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: ta có: DEBF là hình bình hành
nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)
Ta có:ABCD là hình bình hành
nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra BD,EF,AC đồng quy
A B C D M N L H
Do MN là đường trung bình của tam giác ABD nên MN // BD. Vậy thì \(LH\perp MN.\)
Lại có LN là đường trung bình của tam gaisc ACD nên LN // CD. Do \(MH\perp CD\Rightarrow MH\perp LN.\)
Xét tam giác LNM có LH và MH là các đường cao nên H là trực tâm tam giác LMN.