K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

Mk cần gấp ai giúp mk vs ạ !

 

19 tháng 12 2021

Ko ai lm ak ???

 

DT
19 tháng 12 2023

\(A=2^0+2^1+2^2+2^3+2^4+2^5+...+2^{100}\\ =\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+...+\left(2^{98}+2^{99}\right)+2^{100}\\ =3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+...+2^{98}.\left(1+2\right)+2^{100}\\ =3+2^2.3+2^4.3+...+2^{98}.3+2^{100}\\ =3.\left(1+2^2+2^4+...+2^{98}\right)+2^{100}\)

Vì : \(3\left(1+2^2+2^4+...+2^{98}\right)⋮3\) và \(2^{100}\) chia 3 dư 1

Nên A chia 3 dư 1

19 tháng 12 2023

giúp vs ạ

 

3 tháng 11 2023

không bt nữa

8 tháng 1 2024

Lồn cặc

 

15 tháng 12 2021

\(A=2^0+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(A=1+3\left(2+2^3+2^5+...+2^{99}\right)\)

A chia 3 dư 1

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:

$A=1+2^1+2^2+2^3+...+2^{100}$
$A=1+(2^1+2^2)+(2^3+2^4)+...+(2^{99}+2^{100})$

$=1+2(1+2)+2^3(1+2)+....+2^{99}(1+2)$

$=1+(1+2)(2+2^3+...+2^{99})=1+3(2+2^3+...+2^{99})$

$\Rightarrow A-1=3(2+2^3+...+2^{99})\vdots 3$

$\Rightarrow A$ chia 3 dư 1.

13 tháng 12 2021

học dốt thế lớp 1 còn giải dc

24 tháng 9 2023

thế bạn ánh giải đi xem nào lớp 1 đã học mũ đâu nhể!

22 tháng 12 2021

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

học tốt nhé bạn

22 tháng 12 2021

mik cũng vậy

2 tháng 12 2021

A=1+2(1+2)+2^3(1+2)+2^5(1+2)+...+2^99(1+2)=

=1+3(2+2^3+2^5+...+2^99)

=> A chia 3 dư 1