Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), chứng minh rằng
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)=k
\(\Rightarrow\)a=bk;c=dk
ta có:\(\frac{a.b}{cd}\)=\(\frac{bk.b}{dk.d}\)=\(\frac{kb^2}{kd^2}\)=\(\frac{b^2}{d^2}\)
ta có:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{k^2.b^2+b^2}{k^2.d^2+d^2}\)=\(\frac{b^2(k+1)}{d^2(k+1)}\)=\(\frac{b^2}{d^2}\)
vậy:\(\frac{a^2+b^2}{c^2+d^2}\)\(=\)\(\frac{ab}{cd}\)
A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)
\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)
suy ra đpcm.
\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)
suy ra đpcm.
B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)
\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)
suy ra đpcm.
Biết \(\dfrac{a^2 + b^2}{c^2 + d^2}=\dfrac{ab}{cd}\) với a,b,c,d khác 0. Chứng minh rằng:
\(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc\(\dfrac{a}{b}=\dfrac{d}{c}\) cái \(\dfrac{a}{b}=\dfrac{c}{d}\)thì mình chứng minh được rồi còn cái\(\dfrac{a}{b}=\dfrac{d}{c}\)thì chưa mong các bạn giúp ạ
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)=>\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{c^2}=\frac{ab}{cd}\)
Aps dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
ta có: a/b=c/d=>ad=bc
=>ad=cb=>ab=cd
=>a/c=b/d
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/c=b/d=(a+b)/(c+d)=ab/cd(đpcm)
đặt x/2=y/5=k
=> x=2k, y=5k
ta có: 5kx2k=10
=> 10k^2=10
=> k^2=1
=> k=±1
với k=1=> x=2x1=2 ; y=1x5=5
với k=-1=> x=-1x2=-2 ; y=-1x5=-5
\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)(1)
=>5x-2y=0
=>-(2y-5x)=0
=>2y-5x=0 (1)
xy=10 (2)
=>ta có:\(\int^{2y-5x=0}_{xy=10}\)
giải ra ta đc:x=±2;y=±5
Ta có:
Vế trái: -a.(c-d)-d.(a+c)
=-ac+ad-ad-cd
=-ac-cd (1)
Vế phải: -c(a+d)=-ac-cd (1)
Vì (1)=(2)
<=> -a.(c-d)-d.(a+c)=-c.(a+d) (đpcm)
(Lưu ý: "đpcm" nghĩa là "điều phải chứng minh".)
Lời giải:
1) \(VT=-a.\left(c-d\right)-d.\left(a+c\right)\)
$=-ac+ad-da-dc$
$=-ac-dc$
$=-c(a+d) (đpcm)$
$2) (3a+2).(2a-1)+(3-a).(6a+2)-17.(a-1)$
$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$
$=21$
Vậy giá trị biểu thức không phụ thuộc vào a
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a-b}{c-d}=\dfrac{bk-b}{dk-d}=\dfrac{b}{d}\)
\(\dfrac{2a-3b}{2c-3d}=\dfrac{2bk-3b}{2dk-3d}=\dfrac{b}{d}\)
Do đó: \(\dfrac{a-b}{c-d}=\dfrac{2a-3b}{2c-3d}\)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
sao abd2 chuyển vế mà hk đổi dấu