K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

a) Tứ giác ACBM có: 

Góc BAC=90 (vì ABC vuông tại A) 

BMC=90 (góc nội tiếp chắn nửa đường tròn )

=> BAC+BMC=180 => ACBM nội tiếp đ.tr


b) Tứ giác BNME nội tiếp trong đường tròn đường kính BE nên: 
góc ABN=AME (cùng bù với góc NME)
Mà góc AME=ABC (góc nội tiếp cùng chắn cung AC) 
Nên ABN=ABC =>  BA là tia phân giác của góc CBN.
c) 
(  tam giác KBC có hai đường cao BA và CM cắt nhau tại E
=>  E là trực tâm tam giác KBC => KE vuông góc với BC (1)
( góc EDB=90 góc nội tiếp chắn nửa đường tròn) =>  ED vuông góc với BC (2)
(1) và (2) ta có  ba điểm K, E, D thẳng hàng và KD vuông với BC

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!Bài 1: Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại Hb) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MACc) Tia BM cắt AO tại N. Chứng minh NA=NHd) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM....
Đọc tiếp

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!

Bài 1: 
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.

Bài 2: 
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD

0
25 tháng 5 2018

a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)

xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°

suy ra AMNB nội tiếp

b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)

xét tứ giác CPAB có góc CAB=CPB=90°

suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)

suy ra góc BCA=BPA(1)

góc PBA=PCA(2)

mà góc MPN=ACB=1/2sđcung MN(3)

góc PCA=PNM=1/2sđcung PM(4)

từ 1,3 suy ra góc ACB=MPN

từ 2,4 suy ra góc PNM=PBA

xét hai tam giác PAB và PMN có 

góc APB=MPN(cmt)

góc PNM=PBA(cmt)

suy ra hai tam giác đó đồng dạng (đpcm)

c, ta có góc PDN=PCN=1/2sđ cung PN(1)

góc PAC=PBC(CPAB nội tiếp)(2)

mà góc PBC+PCB=90°(3)

từ 1,2,3 suy ra góc DAC+ADE=90°

suy ra DN vuông với AC

xét hai tam giác PCM và ECG có góc C chung

góc CEG=CPM=90°

suy ra hai tam giác đó đồng dạng

suy ra PC/EC=CM/CG

suy ra PC.CG=EC.CM(đpcm)

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em