Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác ACBM có:
Góc BAC=90 (vì ABC vuông tại A)
BMC=90 (góc nội tiếp chắn nửa đường tròn )
=> BAC+BMC=180 => ACBM nội tiếp đ.tr
b) Tứ giác BNME nội tiếp trong đường tròn đường kính BE nên:
góc ABN=AME (cùng bù với góc NME)
Mà góc AME=ABC (góc nội tiếp cùng chắn cung AC)
Nên ABN=ABC => BA là tia phân giác của góc CBN.
c)
( tam giác KBC có hai đường cao BA và CM cắt nhau tại E
=> E là trực tâm tam giác KBC => KE vuông góc với BC (1)
( góc EDB=90 góc nội tiếp chắn nửa đường tròn) => ED vuông góc với BC (2)
(1) và (2) ta có ba điểm K, E, D thẳng hàng và KD vuông với BC
a: Xét (O) có
ΔEDB nội tiếp
EB là đường kính
Do đó: ΔEDB vuông tại D
=>ED\(\perp\)BC
b: Xét (O) có
ΔEMB nội tiếp
EB là đường kính
Do đo: ΔEMB vuông tại M
Xét tứ giác ACBM có \(\widehat{CAB}=\widehat{CMB}=90^0\)
nen ACBM là tứ giác nội tiếp