Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Áp dụng định lý Py-ta-go vào ΔABHta có :
AB^2=AH^2+BH^2
=AH^2+18^2
=AH^2+324
⇒AH^2=AB^2−324
Áp dụng định lý Py-ta-go vào ΔAHC ta có
AC^2=HC^2+AH^2
=322+(AB^2−324)
=1024−324+AB^2
=700+AB^2
⇒AC=√700+AB2
Bài 1:
A C B
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
A B C D
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15cm
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20cm
Vậy: AB=15cm; AC=20cm
Ta có: BH+CH=BC(H nằm giữa B và C)
hay BC=9+16=25cm
Ta có: \(AB^2+AC^2=15^2+20^2=625\)
\(BC^2=25^2=625\)
Do đó: \(BC^2=AB^2+AC^2\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
#)Giải :
A B C H 6 8
Áp dụng định lí Py - ta - go ta có :
\(BC^2=AB^2+AC^2=6^2+8^2=36+64=100\)
\(\Rightarrow BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng vào tam giác vuông ABC, ta có :
\(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\)
\(\Rightarrow AH^2=\frac{576}{25}\Rightarrow AH=\frac{24}{5}=4,8\left(cm\right)\)
\(\Rightarrow BC^2=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow AB^2=BH.BC\Rightarrow6^2=BH.10\Rightarrow BH=3,6\left(cm\right)\)
Vậy BC = 10cm ; AH = 4,8cm ; BH = 3,6cm
A B C H
Giải: Áp dụng định lí Pi - ta- go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> BC2 = 62 + 82 = 36 + 64 = 100
=> BC = 10
Ta có: Sabc = AB.AC/2
Sabc = AH.BC/2
=> AB.AC/2 = AH.BC/2
=> AB.AC = AH.BC
=> 6.8 = AH.10
=> 48 = AH.10
=> AH = 48 : 10 = 4,8
Xét t/giác ABH có : AB2 = AH2 + BH2 (theo định lí Pi - ta - go)
=> BH2 = AB2 - AH2 = 62 - (4,8)2 = 36 - 23,04 = 12,96
=> BH = 3,6
Vậy ...
A B C H 8cm 32cm ??? Chỉ mag TC minh họa
AD định lí Py ta go
\(AB^2=AH^2+BH^2=AH^2+8^2=AH^2+64\)
\(\Rightarrow AB=AH^2+64\)
Thực hiện tiếp vs AC