K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

a) Vì D là điểm đối xứng với A qua \(M\left(gt\right)\)

=> M là trung điểm của \(AD.\)

=> \(AM=DM.\)

Xét 2 \(\Delta\) \(AMB\)\(DMC\) có:

\(AM=DM\left(cmt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(MB=MC\) (vì M là trung điểm của \(BC\))

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CD.\)

c) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)

=> \(AB=DC\) (2 cạnh tương ứng).

Lại có: \(\widehat{ABM}=\widehat{DCM}\left(cmt\right)\)

=> \(\widehat{ABC}=\widehat{DCB}.\)

Xét 2 \(\Delta\) \(ABC\)\(DCB\) có:

\(AB=DC\left(cmt\right)\)

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

Cạnh BC chung

=> \(\Delta ABC=\Delta DCB\left(c-g-c\right)\) (1).

=> \(\widehat{ACB}=\widehat{DBC}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AC\) // \(BD.\)

Từ (1) => \(\widehat{BAC}=\widehat{CDB}\) (2 góc tương ứng).

\(\widehat{BAC}=90^0\left(gt\right)\)

=> \(\widehat{CDB}=90^0.\)

=> \(CD\perp BD.\)

\(AC\) // \(BD\left(cmt\right)\)

=> \(AC\perp CD.\)

d) Có 2 cách:

Cách 1:

Ta có: \(AC\perp CD\left(cmt\right)\)

=> \(\widehat{DCA}=90^0.\)

\(\widehat{BAC}=90^0\left(gt\right).\)

=> \(\widehat{BAC}=\widehat{DCA}=90^0.\)

Xét 2 \(\Delta\) vuông \(ABC\)\(CDA\) có:

\(\widehat{BAC}=\widehat{DCA}=90^0\)

\(AB=CD\left(cmt\right)\)

Cạnh AC chung

=> \(\Delta ABC=\Delta CDA\) (cạnh huyền - cạnh góc vuông).

Cách 2:

\(AB\) // \(CD\left(cmt\right)\)

=> \(\widehat{ABC}=\widehat{CDA}\) (vì 2 góc so le trong).

Xét 2 \(\Delta\) \(ABC\)\(CDA\) có:

\(AB=CD\left(cmt\right)\)

\(\widehat{ABC}=\widehat{CDA}\left(cmt\right)\)

Cạnh AC chung

=> \(\Delta ABC=\Delta CDA\left(c-g-c\right).\)

e) Theo câu d) ta có \(\Delta ABC=\Delta CDA.\)

=> \(BC=AD\) (2 cạnh tương ứng).

Ta có: M là trung điểm của \(AD\left(cmt\right)\)

=> \(AM=\frac{1}{2}AD\) (tính chất trung điểm).

\(AD=BC\left(cmt\right)\)

=> \(AM=\frac{1}{2}BC\left(đpcm\right).\)

Chúc bạn học tốt!

9 tháng 11 2019

Hỏi đáp ToánHỏi đáp Toán

Có phải toán 8 không bạn? Gọi D là điểm đối xứng với M và N qua đâu bạn?

30 tháng 10 2019

a) Xét 2 \(\Delta\) \(AMB\)\(DMC\) có:

\(AM=DM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(MB=MC\) (vì M là trung điểm của \(BC\))

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)

=> \(AB=CD\) (2 cạnh tương ứng)

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng)

Hay \(\widehat{ABC}=\widehat{DCB}.\)

c) Xét 2 \(\Delta\) \(ABC\)\(DCB\) có:

\(AB=CD\left(cmt\right)\)

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

Cạnh BC chung

=> \(\Delta ABC=\Delta DCB\left(c-g-c\right).\)

d) Theo câu c) ta có \(\Delta ABC=\Delta DCB.\)

=> \(AC=BD\) (2 cạnh tương ứng)

=> \(\widehat{BAC}=\widehat{CDB}\) (2 góc tương ứng)

\(\widehat{BAC}=90^0\left(gt\right)\)

=> \(\widehat{CDB}=90^0\)

Vậy \(\widehat{CDB}=90^0.\)

Chúc bạn học tốt!

30 tháng 10 2019

Chương II : Tam giácChương II : Tam giác

9 tháng 4 2020

Cho tam giác vuông ABC có góc A bằng 90 độ. M là trung điểm của BC ...

a) Xét ΔABM và ΔDCM ta có:

AM = DM (GT)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

BM = CM (GT)

=> ΔABM = ΔDCM (c - g - c)

b) Có: ΔABM = ΔDCM (câu a)

=> \(\widehat{ABM}=\widehat{MCD}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc so le trong

=> AB // CD
c) Có: AB // CD (câu b)

=> \(\widehat{BAC}+\widehat{DCA}=180^0\) (2 góc trong cùng phía)

=> \(\widehat{DCA}=180^0-\widehat{BAC}=180^0-90^0\)

=> \(\widehat{DCA}=90^0\)

d) Có: ΔABM = ΔDCM (câu a)

=> AB = CD (2 cạnh tương ứng)

Xét ΔABC và ΔCDA ta có:

AB = CD (cmt)

\(\widehat{BAC}=\widehat{DCA}\left(=90^0\right)\)

AC: cạnh chung

=> ΔABC = ΔCDA (c - g - c)

=> BC = AD (2 cạnh tương ứng)

e) Có: ΔABC = ΔCDA (câu d)

=> BC = AD (2 cạnh tương ứng)

Mà: \(AM=\frac{1}{2}AD\) (GT)

=> \(AM=\frac{1}{2}BC\)

29 tháng 1 2017

A B C D I K M 1 2

a)

Xét tam giác AMB và tam giác DMC có:

AM = DM (gt)

AMB = DMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác DMC (c.g.c)

b)

=> ABM = DCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB // DC

c)

Xét tam giác IMA vuông tại I và tam giác KMD vuông tại K có:

IMA = KMD (2 góc đối đỉnh)

MA = MD (gt)

=> Tam giác IMA = Tam giác KMD (cạnh huyền - góc nhọn)

=> IM = KM (2 cạnh tương ứng)

30 tháng 1 2017

Đỗ Nguyễn Như Bình hăm có gì :D

25 tháng 3 2020
https://i.imgur.com/CbHZtQO.jpg
19 tháng 1 2021

a, xét △ AMB và △ AMC có:

                AB=AC(gt)

                góc BAM=góc CAM (gt)

                AM chung

=> △ AMB= △ AMC(c.g.c)

b,xét △ AHM và △ AKM có:

                AM cạnh chung

                góc HAM=ˆgóc KAM (gt)

=>△ AHM= △ AKM(CH-GN)

=> AH=AK

c,gọi I là giao điểm của AM và HK

xét △ AIH và △ AIK có:

            AH=AK(theo câu b)

            góc AIH=ˆgóc AIK (gt)

            AI chung

=> △ AIH=△ AIK (c.g.c)

=> góc AIH=ˆgóc AIK 

mà góc AIH+góc AIK=180độ(2 góc kề bù)

=> HK ⊥ AM

19 tháng 1 2021

Cho 1000 like & 1000 ❤

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

9 tháng 12 2019

Câu 1:

\(5^x+5^{x+1}=750\)

\(\Rightarrow5^x.1+5^x.5^1=750\)

\(\Rightarrow5^x.\left(1+5^1\right)=750\)

\(\Rightarrow5^x.6=750\)

\(\Rightarrow5^x=750:6\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy \(x=3.\)

Câu 2:

c)

Chúc bạn học tốt!