Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
m là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC
b: ABCD là hình bình hành
=>AB//CD
=>CD vuông góc AC
c: Xét tứ giác ABNC có
AB//NC
AC//BN
=>ABNC là hình bình hành
=>BN=AC; AB=NC
Xét ΔBAM vuông tại A và ΔNCM vuông tại C có
MA=MC
BA=CN
=>ΔBAM=ΔNCM
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
b: ta có: ABCD là hình bình hành
nên CD//AB
hay CD\(\perp\)AC
c: Xét tứ giác ABNC có
AB//NC
NB//AC
Do đó: ABNC là hình bình hành
SUy ra: CN=AB
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó: ΔABM=ΔCNM
A B C M N D / / x x
Xét △AMD và △CMB
Có: AM = MC (M là trung điểm)
AMD = CMB (2 góc đối đỉnh)
MD = MB (gt)
=> △AMD = △CMB (c.g.c)
=> AD = BC (2 cạnh tương ứng)
b, Xét △ABM và △CDM
Có: AM = MC (gt)
BMA = CMD (2 góc đối đỉnh)
MB = MD (gt)
=> △ABM = △CDM (c.g.c)
=> BAM = DCM (2 góc tương ứng)
Mà BAM = 90o
=> DCM = 90o
=> AC ⊥ CD
c, Vì BN // AC (gt)
=> BNC = ACD (2 góc đồng vị)
Mà ACD = 90o (câu b)
=> BNC = 90o
Xét tam giác BND vuông tại N có:
NM là đường trung tuyến ứng với cạnh huyền BD => NM = 1/2 . BD = BM
Xét △ABM vuông tại A và △CNM vuông tại C
Có: AM = MC (gt)
BM = MN (cmt)
=> △ABM = △CNM (ch-cgv)
a) Xét ΔΔBMC và ΔΔDMA có:
BM = DM (gt)
BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)
MC = MA (suy từ gt)
=> ΔΔBMC = ΔΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔΔBMC = ΔΔDMA (câu a)
nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔΔDCA và ΔΔBAC có:
CA chung
CADˆCAD^ = ACBˆACB^ ( cm trên)
DA = BC (cm trên)
=> ΔΔDCA = ΔΔBAC (c.g.c)
=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)
Do đó CD ⊥⊥ AC
c) .................
Giải
a) Xét ΔBMC và ΔDMA có:
BM = DM (gt)
BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)
MC = MA (suy từ gt)
=> ΔBMC = ΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔBMC = ΔDMA (câu a)
nên \(\widehat{BCA}=\widehat{CAD}\)= \(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔDCA và ΔBAC có:
CA chung
\(\widehat{CAD}\)= \(\widehat{ACB}\)(cm trên)
DA = BC (cm trên)
=> ΔDCA = ΔBAC (c.g.c)
=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)
Do đó CD ⊥ AC
c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)
Xét tam giác BND vuông tại N có:
NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM
Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:
AM = CM (gt)
NM = BM (cmt)
=> ΔABM=ΔCNM(ch−1cgv) (đpcm)
# mui #
a) Xét 2 \(\Delta\) \(AMD\) và \(CMB\) có:
\(AM=CM\) (vì M là trung điểm của \(AC\))
\(\widehat{AMD}=\widehat{CMB}\) (vì 2 góc đối đỉnh)
\(MD=MB\left(gt\right)\)
=> \(\Delta AMD=\Delta CMB\left(c-g-c\right)\)
=> \(AD=BC\) (2 cạnh tương ứng).
b) Xét 2 \(\Delta\) \(BMA\) và \(DMC\) có:
\(BM=DM\left(gt\right)\)
\(\widehat{BMA}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MA=MC\) (vì M là trung điểm của \(AC\))
=> \(\Delta BMA=\Delta DMC\left(c-g-c\right)\)
=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng).
Mà \(\widehat{BAM}=90^0\left(gt\right)\)
=> \(\widehat{DCM}=90^0.\)
=> \(CD\perp MC\)
Hay \(CD\perp AC.\)
c) Theo câu b) ta có \(\Delta BMA=\Delta DMC.\)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD\)
Hay \(AB\) // \(CN.\)
Có:
\(BN\) // \(AC\left(gt\right)\)
\(AB\) // \(CN\left(cmt\right)\)
=> \(AB=CN\) (tính chất đoạn chắn).
Xét 2 \(\Delta\) vuông \(ABM\) và \(CNM\) có:
\(\widehat{BAM}=\widehat{NCM}=90^0\)
\(AB=CN\left(cmt\right)\)
\(AM=CM\) (như ở trên)
=> \(\Delta ABM=\Delta CNM\) (2 cạnh góc vuông tương ứng bằng nhau) (đpcm).
Chúc bạn học tốt!
nè
) Xét ΔΔBMC và ΔΔDMA có:
BM = DM (gt)
BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)
MC = MA (suy từ gt)
=> ΔΔBMC = ΔΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔΔBMC = ΔΔDMA (câu a)
nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔΔDCA và ΔΔBAC có:
CA chung
CADˆCAD^ = ACBˆACB^ ( cm trên)
DA = BC (cm trên)
=> ΔΔDCA = ΔΔBAC (c.g.c)
=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)
Do đó CD ⊥⊥ AC
a) Xét ΔΔBMC và ΔΔDMA có:
BM = DM (gt)
BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)
MC = MA (suy từ gt)
=> ΔΔBMC = ΔΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔΔBMC = ΔΔDMA (câu a)
nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔΔDCA và ΔΔBAC có:
CA chung
CADˆCAD^ = ACBˆACB^ ( cm trên)
DA = BC (cm trên)
=> ΔΔDCA = ΔΔBAC (c.g.c)
=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)
Do đó CD ⊥⊥ AC
c) .................