K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

b: ta có: ABCD là hình bình hành

nên CD//AB

hay CD\(\perp\)AC

c: Xét tứ giác ABNC có 

AB//NC

NB//AC

Do đó: ABNC là hình bình hành

SUy ra: CN=AB

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó: ΔABM=ΔCNM

12 tháng 10 2019

A B C M N D / / x x

Xét △AMD và △CMB

Có: AM = MC (M là trung điểm)

     AMD = CMB (2 góc đối đỉnh)

       MD = MB (gt)

=> △AMD = △CMB (c.g.c)

=> AD = BC (2 cạnh tương ứng)

b, Xét △ABM và △CDM

 Có: AM = MC (gt)

     BMA = CMD (2 góc đối đỉnh)

      MB = MD (gt)

=> △ABM = △CDM (c.g.c)

=> BAM = DCM (2 góc tương ứng)

Mà BAM = 90o

=> DCM = 90o

=> AC ⊥ CD

c, Vì BN // AC (gt)

=> BNC = ACD (2 góc đồng vị)

Mà ACD = 90o (câu b)

=> BNC = 90o

Xét tam giác BND vuông tại N có:

NM là đường trung tuyến ứng với cạnh huyền BD => NM = 1/2 . BD = BM

Xét △ABM vuông tại A và △CNM vuông tại C

Có: AM = MC (gt)

      BM = MN (cmt)

=> △ABM = △CNM (ch-cgv)

21 tháng 12 2016

a) Xét t/g AMD và t/g CMB có:

AM = MC (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c)

=> AD = BC (2 cạnh tương ứng) (đpcm)

b) Xét t/g BMA và t/g DMC có:

MB = MD (gt)

BMA = DMC ( đối đỉnh)

MA = MC (gt)

Do đó, t/g BMA = t/g DMC (c.g.c)

=> ABM = CDM (2 góc tương ứng)

Mà ABM và CDM là 2 góc ở vị trí so le trong nên AB // CD

Mà AB _|_ AC (gt) => AC _|_ CD hay AC _|_ DN

Có: BN // AC (gt)

AB // CN (cmt)

=> AB = CN ( tính chất đoạn chắn)

Xét t/g ABM vuông tại A và t/g CNM vuông tại C có:

AB = CN (cmt)

AM = CM (gt)

Do đó, t/g ABM = t/g CNM (2 cạnh góc vuông) (đpcm)

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

a: Xét tứ giác ABCD có

m là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC

b: ABCD là hình bình hành

=>AB//CD
=>CD vuông góc AC

c: Xét tứ giác ABNC có

AB//NC

AC//BN

=>ABNC là hình bình hành

=>BN=AC; AB=NC

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=CN

=>ΔBAM=ΔNCM

a) Xét ΔΔBMC và ΔΔDMA có:

BM = DM (gt)

BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)

MC = MA (suy từ gt)

=> ΔΔBMC = ΔΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔΔBMC = ΔΔDMA (câu a)

nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔΔDCA và ΔΔBAC có:

CA chung

CADˆCAD^ = ACBˆACB^ ( cm trên)

DA = BC (cm trên)

=> ΔΔDCA = ΔΔBAC (c.g.c)

=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)

Do đó CD ⊥⊥ AC

c) .................

7 tháng 4 2020

              Giải

a) Xét ΔBMC và ΔDMA có:

BM = DM (gt)

BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)

MC = MA (suy từ gt)

=> ΔBMC = ΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔBMC = ΔDMA (câu a)

nên \(\widehat{BCA}=\widehat{CAD}\)\(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔDCA và ΔBAC có:

CA chung

\(\widehat{CAD}\)\(\widehat{ACB}\)(cm trên)

DA = BC (cm trên)

=> ΔDCA = ΔBAC (c.g.c)

=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)

Do đó CD  AC

 c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)

Xét tam giác BND vuông tại N có:

NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM

Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:

AM = CM (gt)

NM = BM (cmt)

=> ΔABM=ΔCNM(ch−1cgv) (đpcm)

# mui #