Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có lẽ câu mà cậu chưa làm được là c nhưng rất tiếc là tớ đang trong tình trạng suy nghĩ :v
a)
*) Ta có: \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}=\widehat{EAB}\)
Xét tam giác DAC và tam giác BAE
DA=BA
\(\widehat{DAC}=\widehat{BAE}\)
AC=AE
=> \(\Delta DAC=\Delta BAE\left(c.g.c\right)\) => DC=BE (cạnh tương ứng) và \(\widehat{E_1}=\widehat{C_1}\) (góc tương ứng)
*) Trong tam giác ANE có: \(90^o+\widehat{E_1}+\widehat{N_1}=180^o\) (1)
*) Trong tam giác TNC có: \(\widehat{NTC}+\widehat{C_1}+\widehat{N_2}=180^o\) (2)
Từ 1 và 2 => \(90^o+\widehat{E_1}+\widehat{N_1}=\widehat{NTC}+\widehat{C_1}+\widehat{N_2}\) Mà \(\widehat{E_1}=\widehat{C_1}\) và \(\widehat{N_1}=\widehat{N_2}\) (Góc đối đỉnh)
=> \(\widehat{NTC}=90^o\)
b) Do tam giác DTB là tam giác vuông. Áp dụng định lý Py-ta-go, ta có:\(DB^2=DT^2+BT^2\) (1)
Và tam giác TEC cũng là tam giác vuông => \(EC^2=ET^2+TC^2\) (2)
Từ 1 và 2 => \(DB^2+EC^2=DT^2+BT^2+ET^2+TC^2=\left(TB^2+TC^2\right)+\left(TD^2+TE^2\right)=DE^2+BC^2\)
Câu c thì bạn chỉ cần vẽ thêm 1 đường vuông góc với cạnh đối điện rồi làm thôi .....
a) xét tam giác AHC và tam giác ABC có :
góc A = góc H =\(90^0\)
góc C chung
=> tam giác ACH đồng dạng tam giác BCA (g.g)
=>\(\frac{AC}{BC}=\frac{CH}{AC}\)
=>DPCM
A B C H
Có t/g BAC đồng dạng với AHC ( góc góc )
suy ra \(\frac{BC}{AC}=\frac{AC}{HC}\)
Nhân chéo nó lên tao được
\(BC.HC=AC.AC\Leftrightarrow BC.HC=AC^2\) (1)
xét tiếp tam giác BHA đồng dạng với AHC ( góc góc )
suy ra \(\frac{BH}{AH}=\frac{HA}{HC}\) Lại nhân chéo nó lên tao được
\(BH.HC=AH.HA\Leftrightarrow BH.CH=AH^2\) (2)
từ 1 và 2 suy ra được Pain luôn đúng , làm ny anh nhé baby
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
a, Xét tam giác DAE và tam giác BAC có
DAE = BAC ( đối đỉnh )
AD = AB ( gt)
AE= AC ( gt)
=> tam giác DAE = tam giác BAC
=> BC= DE
b, ta có DAE = BAC = 90 độ ( 2 góc đối đỉnh )
lại có BAD = CAE đối đỉnh
=> BAD=CAE = 360 - (BaC + DAE) tất cả trên 2
<=> BAD= 360 -180 tâts cả trên 2
<=> BAD = 180 trên 2
<=> BAD = 90 độ
=> tam giác BAD vuông lại A
mà AB =AD (gt)
=> BAD vuông cân
=> DBA = BDA = 90 trên 2 = 45 độ
Chứng mình tương tự tam giác CAE vuông cân
=>AEC=ACE= 90 trên 2 = 45 độ
=> DBA=AEC=45 độ
mà chúng ở vị trí sole trong
=> BD // CE
hình b tự vẽ
áp dụng định lý pi-ta-go vào tam giác vuông AHB, ta có:
AH2+HB2=AB2(1)
áp dụng định lý pi-ta-go vào tam giác vuông AHC, ta có:
AH2+CH2=AC2(2)
(1)-(2)=AB2-AC2=AH2+HB2-AH2-CH2=HB2-CH2(*)
áp dụng định lý pi-ta-go vào tam giác vuông EHB, ta có:
EH2+HB2=EB2(3)
áp dụng định lý pi-ta-go vào tam giác vuông EHC, ta có:
CH2+EH2=CE2(4)
(3)-(4)=EH2+HB2-CH2+EH2=HB2-CH2(--)
tự làm tiếp
có 2 cách
Xét tam giác AHB vuông tại H có :
AB^2=BH^2+AH^2(pitago)
Xét tam giác AHC vuông tại H có:
AC^2=AH^2+HC^2(pitago)
Xét tam giác ABC vuông tại A có:
BC^2=AB^2+AC^2
mà AB^2=BH^2+AH^2 và AC^2=AH^2+HC^2 (cmt)
=>BC^2=BH^2+AH^2+AH^2+HC^2
=>BC^2=2AH^2+BH^2+HC^2
cách 2
Ta có: BC^2=AB^2+AC^2(Đ/lý Pitago)
=>BC^2=BH^2+AH^2+AH^2+HC^2
=>BC^2=BH^2+2AH^2+HC^2