K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) xét tam giác AHC và tam giác ABC có :

góc A = góc H =\(90^0\)

góc C chung 

=> tam giác ACH đồng dạng tam giác BCA (g.g)

=>\(\frac{AC}{BC}=\frac{CH}{AC}\)

=>DPCM

30 tháng 7 2017

có 2 cách

Xét tam giác AHB vuông tại H có : 

AB^2=BH^2+AH^2(pitago) 

Xét tam giác AHC vuông tại H có: 

AC^2=AH^2+HC^2(pitago) 

Xét tam giác ABC vuông tại A có: 

BC^2=AB^2+AC^2 

mà AB^2=BH^2+AH^2 và AC^2=AH^2+HC^2 (cmt) 

=>BC^2=BH^2+AH^2+AH^2+HC^2 

=>BC^2=2AH^2+BH^2+HC^2 

cách 2

Ta có: BC^2=AB^2+AC^2(Đ/lý Pitago) 

=>BC^2=BH^2+AH^2+AH^2+HC^2 

=>BC^2=BH^2+2AH^2+HC^2

5 tháng 2 2018

Câu hỏi của Maii Tômm (Libra) - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

13 tháng 3 2018

nhưng bài này lớp 7 mà

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: Ta có: ΔBAD=ΔBHD

nên BA=BH và DA=DH

=>BD là đường trung trực của AH

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có 

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

DO đó: ΔDAK=ΔDHC

a, \(\Delta\) HBA và \(\Delta\) ABC:

^B - chung

^H = ^A= 900 => tg HBA đồng dạng ABC.

b, Vì tam giác BHA đồng dạng tg ABC:

=> \(\frac{AB}{HB}=\frac{BC}{AB}\Rightarrowđpcm\)

c, ADTC tia phân giác:

\(\Rightarrow\frac{AB}{AC}=\frac{BI}{IC}\Rightarrow\frac{BI}{AB}=\frac{IC}{AC}\)

ADTC dãy tỉ số bằng nhau 

\(\frac{BI}{AB}=\frac{IC}{AC}=\frac{BI+IC}{AB+AC}=\frac{BC}{AB+AC}=\frac{10}{6}+8=\frac{5}{7}\)

\(\Leftrightarrow\hept{\begin{cases}BI=\frac{5}{7}.6=4,3\\IC=\frac{5}{7}.8=5,7\end{cases}}\)

16 tháng 12 2021

b: Ta có: ΔBAC cân tại A

mà AM là đường cao

nên M là trung điểm của BC

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b,c: Bạn ghi rõ đề lại đi bạn

30 tháng 3 2023

loading...