Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot CB\)(hệ thức lượng)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(HA^2=HB\cdot HC\)(hệ thức lượng)
Trong tam giác cân, đường vuông góc đồng thời là trung tuyến, xuất phát từ đỉnh đi qua trung điểm cạnh đối diện.
=> AH = CH = AC : 2 = 10 : 2 = 5 ( cm)
Học tốt!
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đo: ΔABD=ΔACE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
Suy ra: \(\widehat{EAI}=\widehat{DAI}\)
hay AI là tia phân giác của góc BAC
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
a: Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
b: Ta có: ΔBMH=ΔCNH
nên BM=CN
=>AM=AN
hay ΔAMN cân tại A
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
mà AH⊥BC
nên AH⊥MN
Xin cô là cô ơi mạng nhà em hôm qua bị đứt nên ko nộp được ạ
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có
Ab=AC
góc A chung
=>ΔANB=ΔAMC
=>BN=CM
tui làm được câu làm ny tớ nhé
Có t/g BAC đồng dạng với AHC ( góc góc )
suy ra \(\frac{BC}{AC}=\frac{AC}{HC}\)
Nhân chéo nó lên tao được
\(BC.HC=AC.AC\Leftrightarrow BC.HC=AC^2\) (1)
xét tiếp tam giác BHA đồng dạng với AHC ( góc góc )
suy ra \(\frac{BH}{AH}=\frac{HA}{HC}\) Lại nhân chéo nó lên tao được
\(BH.HC=AH.HA\Leftrightarrow BH.CH=AH^2\) (2)
từ 1 và 2 suy ra được Pain luôn đúng , làm ny anh nhé baby