Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: HM vuông góc với AB
a)
Sửa đề: Chứng minh \(AM\cdot AB=AN\cdot AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)(đpcm)
a: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
b: Giả sử AB<AC
Đặt HB=x; HC=y
Theo đề, ta có: x+y=15 và xy=36
=>x=3 và y=12
=>AB=căn 3*15=3căn 5cm; AC=căn 12*15=6*căn 5(cm)
AM=AH^2/AB=6^2/3*căn 5=12/căn 5(cm)
AN=AH^2/AC=6^2/6căn 5=6/căn 5(cm)
S AMHN=AM*AN=72/5cm2
Cho tam giác ABC cân tại A, trung tuyến AM, O là trung điểm của AM. Tia BO cắt AC tại D, CO cắt AB tại E. Cho biết diện tích tam giác ADE=a^2
Tính diện tích tam giác ABC
a AM.AB =AN.AC(=AH2)
b, AH=MN=2(do AMHN là hình chứ nhật)
tam giác AMN đồng dạng với ABC => tỉ số diện tích 2 tam giác là MN2/BC2=22/52=4/25
mà diện tích AMHN=2 lần diện tích AMN=> Diện tích AMHN =8/25 diện tích ABC
Tính được diện tích ABC => diện tích AMHN