Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A B C D E
Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC.
Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)
Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)
(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)
Mà \(\widehat{ADB}=\widehat{ABD}\)
=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)
=> AC>AB
A B C H
Xét tam giác ABC vuông tại A
Theo BĐT tam giác: \(AB< AC+BC\)
Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)
\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)
Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)
Hay \(AB+AC< AH+2CH+BH+AC\)
Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)
Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)
Hay \(AB+AC< 2AH+2CH+BC\)
Tới đây bí rồi.
Ta có: góc ABC = góc BAC + góc ACB (Tam giác abc vuông tại a)
=> BC = AB + AC (Quan hệ giữa góc và cạnh đối diện)
=> BC + AH > AB + AC
Hay AB + AC < BC + AH
Ta có:
AB<AH+BH(bất đẳng thức trong tam giác ABH)
AC<AH+CH(bất đẳng thức trong tam giác ACH)
=>AB+AC<AH+BH+AH+CH
=>AB+AC<AH+(BH+CH)
=>AB+AC<AH+BC
Bài dưới chứng minh như thế là chưa thấu đáo:
AB+AC<AH+HB+AH+HC => AB+AC<2AH+HB+HC Trong khi bạn giải là AB+AC<AH+HB+AH+HC => AB+AC<AH+HB+HC (chưa thỏa đáng)
a) Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
A B D H C
a.xét tgiac ABD có AB=BD(gt)
nên theo định nghĩa ta có tgiac ABD cân tại B nên => góc BAD=góc BDA
Bạn tự vẽ hình nha
a.
BA = BD (gt)
=> Tam giác BAD cân tại B
=> BAD = BDA
b.
Tam giác HAD vuông tại H có: HAD + BDA = 90
Ta có: KAD + BAD = 90 (2 góc phụ nhau)
mà BAD = BDA (theo câu a)
=> HAD = KAD
=> AD là tia phân giác của HAK
c.
Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:
HAD = KAD (AD là tia phân giác của HAK)
AD là cạnh chung
=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
Chúc bạn học tốt
Bạn tự vẽ hình nha.
Ta có : AH.BC=AB.AC ( bằng hai lần diện tích tam giác ABC) nên 2.AH.BC=2.AB.AC(1)
Theo định lí Pi-ta-go, ta có: AC2+AB2=BC2AC2+AB2=BC2(2)
Mà (AH+BC)2=AH2+BC2+2.AH.BC(AH+BC)2=AH2+BC2+2.AH.BC(3)
(AB+AC)2=AB2+AC2+2.AB.AC(AB+AC)2=AB2+AC2+2.AB.AC(4)
Từ (1);(2);(3);(4) suy ra đpcm
Bạn tự vẽ hình nha
Ta có: AH.BC=AB.AC⇔2AH.BC=2AB.ACAH.BC=AB.AC⇔2AH.BC=2AB.AC
⇔AB2+2AB.AC+AC2=2AH2+HB2+HC2+2AH.BC⇔AB2+2AB.AC+AC2=2AH2+HB2+HC2+2AH.BC
⇔(AB+AC)2<2HC.HB+HB2+HC2+2AH.BC+AH2=AH2+2AH.BC+BC2=(AH+BC)2⇔(AB+AC)2<2HC.HB+HB2+HC2+2AH.BC+AH2=AH2+2AH.BC+BC2=(AH+BC)2
((AH2=HC.HB)(AH2=HC.HB)
⇒AH+BC>AB+AC