Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D K
Lấy K trên cạnh AC sao cho AK=AH.
+) Ta có: ^BAD = ^BAH + ^HAD = ^ACD + ^HAD = ^BDA = ^ACD + ^DAC => ^HAD = ^KAD
Do đó: \(\Delta\)AHD = \(\Delta\)AKD (c.g.c) => ^AHD = ^AKD => ^AKD = 900
=> \(\Delta\)DCK vuông tại K => CK < CD <=> AC - AK < BC - BD <=> AC - AH < BC - AB
<=> AB + AC < BC + AH (đpcm).
+) \(\Delta\)AHD = \(\Delta\)AKD (cmt) => DH = DK. Mà DK < DC do \(\Delta\)DCK vuông K (cmt) => DH < DC (đpcm).
Bạn tự vẽ hình nha
a.
BD = BA (gt)
=> Tam giác BDA cân tại A
=> BAD = BDA
b.
Tam giác HDA vuông tại H có: HAD + BDA = 90
Ta có: KAD + BAD = 90 (2 góc phụ nhau)
mà BAD = BDA (theo câu a)
=> HAD = KAD
=> AD là tia phân giác của HAK
c.
Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:
AD là cạnh chung
DAH = DAK (AD là tia phân giác của HAK)
=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)
=> AK = AH (2 cạnh tương ứng)
d.
Tam giác ABH có: AB < BH + AH (bất đẳng thức tam giác)
Tam giác ACH có: AC < CH + AH (bất đẳng thức tam giác)
=> AB + AC < BH + CH + AH + AH
=> AB + AC < BC + 2AH
Chúc bạn học tốt
A B C H D
a/ Vì AB=BD nên tam giác ABD cân tại B
Mà Góc BAD và góc ADB là 2 góc ứng với cạnh đáy nên 2 góc đó bằng nhau.
a) Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB
b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o
Mà góc CAD + DAB = CAB = 90o
=> góc BDA + DAH = góc CAD + DAB mà góc BDA = góc DAB
=> góc DAH = CAD => AD là phân giác của HAC
c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK
=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)
=> AK = AH ( 2 cạnh tương ứng)
dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền)
=> DC + BD+ AK > KC + BD + AK
=> BC +AK > AC + BD
=> AB + AC < BC + AH (vì AK=AH, AB = AD)
A B D H C
a.xét tgiac ABD có AB=BD(gt)
nên theo định nghĩa ta có tgiac ABD cân tại B nên => góc BAD=góc BDA
Bạn tự vẽ hình nha
a.
BA = BD (gt)
=> Tam giác BAD cân tại B
=> BAD = BDA
b.
Tam giác HAD vuông tại H có: HAD + BDA = 90
Ta có: KAD + BAD = 90 (2 góc phụ nhau)
mà BAD = BDA (theo câu a)
=> HAD = KAD
=> AD là tia phân giác của HAK
c.
Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:
HAD = KAD (AD là tia phân giác của HAK)
AD là cạnh chung
=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
Chúc bạn học tốt
A B C D H K
Bài này tớ nghĩ không cần điểm E đâu.v:))
Trên cạnh AC lấy điểm K sao cho AK=AH.
Do tam giác ABD cân tại B nên ^BAD=^BDA.
Ta có:\(\widehat{DAK}=\widehat{BAC}-\widehat{BAD}=90^0-\widehat{BAD}\)
\(\widehat{HAD}=\widehat{DHA}-\widehat{AHD}=90^0-\widehat{AHD}\)
\(\Rightarrow\widehat{DAK}=\widehat{HAD}\)
Xét \(\Delta\)HAD và \(\Delta\)KAD có:AD chung;^DAK=^HAD;AH=AK \(\Rightarrow\Delta HAD=\Delta KAD\left(c-g-c\right)\Rightarrow\widehat{AHD}=\widehat{AKD}=90^0\)
\(\Rightarrow\Delta CKD\) vuông tại K.\(\Rightarrow KD< DC\)(1)
Mà \(\Delta\)HAD = \(\Delta\)KAD nên HD=KD.(2)
Từ (1) và (2) suy ra điều cần chứng minh_._