Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng đ/lý pytago vào Δ vuông ABC, có:
AC^2 + AB ^2 = BC ^2
8^2 + 6^2 = BC ^2
BC ^2 = 64 + 36
BC ^2 = 100
=>BC = 10 cm
a:BC=10cm
b: Ta có: D nằm trên đường trung trực của BC
nên DB=DC
=>ΔDBC cân tại D
=>góc DBC=góc DCB
c: Xét ΔBCE có
CD là đường trung tuyến
CD=BE/2
Do đó:ΔBCE vuông tại C
A B C M H
Xét tam giác ABC vuông tại A.
Theo định lí Pytago,ta có:\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=\left(CH+BH\right)^2-\left(AM+BM\right)^2\)
Gọi độ dài CH là a; BH là b. Đặt AM = BM = c (a,b,c > 0)
\(=\left(a+b\right)^2-\left(2c\right)^2=\left(a+b\right)^2-4c^2\)
Điều cần c/m tương đương với: \(a^2-b^2=\left(a+b\right)^2-4c^2\) (a,b,c > 0)
\(\Leftrightarrow a^2-b^2=a^2+2ab+b^2-4ac\)
\(\Leftrightarrow a^2-b^2-a^2-2ab-b^2-4ac=0\)
\(\Leftrightarrow-2ab-4ac=0\Leftrightarrow-2\left(ab+2ac\right)=0\)
\(\Leftrightarrow ab+2ac=0\) (vô lí,vì a,b,c > 0 nên \(ab+2ac>0\))
Vậy đề sai.
đề đúng :))
A B C M H
áp dụng định lí pytago vào tam giác vuông CMA. ta có:
CA2+AM2=CM2=> AM2=CM2-CA2 =MB2(vì MB=MA) (1)
áp dụng định lí pytago vào tam giác vuông CHM. ta có:
CH2+HM2=CM2=> CM2-CH2=HM2(2)
áp dụng định lí pytago vào tam giác vuông MHB. ta có:
MH2+HB2=MB2 (3)
từ (1), (2), (3)=> CM2-CH2+HB2=CM2-CA2
=> -CH2+HB2=-CA2 => CA2=CH2-HB2(đpcm)
A B C E D N M K H
CM : a)Xét t/giác ABC và t/giác ADE
có AB = AD (gt)
góc EAD = góc BAC (đối đỉnh)
AC = AE (gt)
=> t/giác ABC = t/giác ADE (c.g.c)
=> ED = BC (hai cạnh tương ứng) (Đpcm)
=> góc E = góc C (hai góc tương ứng)
Mà góc E và góc C ở vị trí so le trong
=> ED // BC (Đpcm)
b) Ta có: t/giác ABC = t/giác ADE (cmt)
=> góc D = góc B (hai góc tương ứng) (1)
Mà góc EDM = góc MDA = góc D/2 (2)
góc ABN = góc NBC = góc B/2 (3)
Từ (1); (2); (3) => góc EDM = góc NBC
Xét t/giác EMD và t/giác CNB
có ED = BC (cmt)
góc EDM = góc NBC (cmt)
góc E = góc C (cmt)
=> t/giác EMD = t/giác CNB (g.c.g) (Đpcm)
c) Ta có: t/giác EMD = t/giác CNB (cmt)
=> MD = BN (hai cạnh tương ứng)
Mà MK = KD = MD/2
BH = HN = BN/2
=> KD = BH
Từ (1); (2); (3) => góc MDA = góc ABN
Xét t/giác ADK và t/giác ABN
có AD = AB (gt)
góc MDA = góc ABN (cmt)
KD = BH (cmt)
=> t/giác ADK = t/giác ABN (c.g.c)
=> góc KAD = góc BAH (hai góc tương ứng)
Do B,A,D là ba điểm thẳng hàng nên góc BAM + góc MAK + góc KAD = 1800
hay góc BAM + góc MAK + góc BAH = 1800
=> ba điểm K, A,H thẳng hàng (Đpcm)
Do D là trung điểm AC => DA = DC ( tính chất trung điểm ) (1)
Xét \(\Delta ABD\)vuông tại A có:
DB2 = AB2 + AD2 ( định lý Py-ta-go )
=> AB2 = DB2 - AD2 (2)
Từ (1) và (2) => AB2 = DB2 - AC2