K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tam giác ABH vuông tại H có HE là đường cao

⇒ AE.AB = AH2 (1)

Xét tam giác AHC vuông tại H có HF là đường cao

⇒ AF.AC = A H 2 (2)

Từ (1) và (2) ⇒ AE.AB = AF.AC

10 tháng 10 2017

a, tứ giác EHFA có : góc A= góc E = góc F =90 độ ( GT ) 

=>> EHFA là HCN 

=>> AH = EF ( hai đường chéo HCN ) 

b, mình hơi vội nên mình gợi ý cho bạn câu b thế này ạ ! CM tam giác BAC ~ tam giác EAF 

=>> AE/AF=AC/AB 

=>> AE.AB=AF.AC 

10 tháng 10 2017

kẻ hộ mình cái hình 

a)Xét tứ giác AEHF có góc A=góc E = góc F= 90 độ nên AEHF là hình chữ nhật 

Do đó AH=EF theo tính chất 2 đường chéo của hcn

b)chưa có hình chưa làm được

30 tháng 7 2021

Câu a) chắc bạn biết làm nhỉ

30 tháng 7 2021

a) tam giác ABC vuông tại A nên áp dụng Py-ta-go

\(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=81\Rightarrow AB=9\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.9}{15}=\dfrac{36}{5}\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=\dfrac{27}{5}\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=\dfrac{48}{5}\left(cm\right)\)

b) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHC vuông tại HA có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AC=AH^2=AE.AB\)

c) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow AH=EF\)

tam giác EHF vuông tại H nên áp dụng Py-ta-go

\(\Rightarrow HE^2+HF^2=EF^2=AH^2\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC\Rightarrow HE^2+HF^2=HB.HC\)

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K

5 tháng 11 2023

loading...

`a)` Tỉ số lượng giác góc `B` của \(\Delta ABC\)

\(SinB=\dfrac{AC}{BC}\\ CosB=\dfrac{AB}{BC}\\ TanB=\dfrac{AC}{AB}\\ CotB=\dfrac{AB}{AC}\)

`b)` Tính `BC,AH`

Xét \(\Delta ABC\) vuông tại `A`, đường cao `AH`

Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\left(htl\right)\)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{25}{576}\\ \Rightarrow AH^2=\dfrac{576\cdot1}{25}=23,04\\ \Rightarrow AH=\sqrt{23,04}=4,8cm\)

Ta có: \(AB\cdot AC=AH\cdot BC\left(htl\right)\)

\(\Rightarrow6\cdot8=4,8\cdot BC\\ \Rightarrow48=4,8\cdot BC\\ \Rightarrow BC=\dfrac{48}{4,8}\\ \Rightarrow BC=10cm\)

Vậy: `AH = 4,8cm; BC= 10cm`

`c)` C/m: `AE * AB = AF * AC`

Xét \(\Delta AHB\) vuông tại `H`, đường cao `HE`

Ta có: \(AH^2=AE\cdot AB\left(htl\right)\)     `(1)`

Xét \(\Delta AHC\) vuông tại `H`, đường cao `HF`

Ta có: \(AH^2=AF\cdot AC\left(htl\right)\)     `(2)`

Từ `(1)` và `(2)` \(\Rightarrow AH^2=AH^2\)

\(\Rightarrow AE\cdot AB=AF\cdot AC\left(=AH^2\right).\)

NV
11 tháng 3 2022

Hệ thức lượng: \(AH^2=BH.CH\)

Hai tam giác vuông BEH và HFC đồng dạng: \(\Rightarrow\dfrac{BE}{FH}=\dfrac{EH}{CF}\Rightarrow BE.CF=EH.FH\)

Hai tam giác vuông AEH và CFH đồng dạng \(\Rightarrow\dfrac{AH}{CH}=\dfrac{EH}{FH}\Rightarrow AH.FH-CH.EH=0\)

 Hai tam giác vuông BEH và AFH đồng dạng \(\Rightarrow\dfrac{BH}{AH}=\dfrac{EH}{FH}\Rightarrow EH.AH-BH.FH=0\)

Ta có: \(\left(BE\sqrt{CH}+CF\sqrt{BH}\right)^2=BE^2.CH+CF^2.BH+2BE.CF.\sqrt{BH.CH}\)

\(=BE^2.CH+CF^2.BH+2BE.CF.AH\)

\(=\left(BH^2-EH^2\right)CH+\left(CH^2-FH^2\right)BH+2BE.CF.AH\)

\(=BH.CH\left(BH+CH\right)-EH^2.CH-FH^2.BH+2EH.FH.AH\)

\(=AH^2.BC+EH\left(AH.FH-EH.CH\right)+FH\left(AH.EH-FH.BH\right)\)

\(=AH^2.BC=\left(AH\sqrt{BC}\right)^2\)

\(\Rightarrow BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

NV
11 tháng 3 2022

undefined

1: AH=căn 4*9=6cm

AB=căn 4*13=2căn 13(cm)

AC=căn 9*13=3*căn 13(cm)

2: Xét tứ giác ADHE có 

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

=>DE=AH

=>DE^2=HB*HC

3: ΔAHB vuông tại H có HD vuông góc AB

nên AD*AB=AH^2

ΔAHC vuông tại H có HE vuông góc AC

nên AE*AC=AH^2

=>AD*AB=AE*AC

4: BD*BA+AE*AC

=AH^2+BH^2=AB^2

5: AD*AB=AE*AC

=>AD/AC=AE/AB

=>ΔADE đồng dạng với ΔACB

6: góc AED+góc MAC

=góc AHD+góc MCA

=góc ABC+góc ACB=90 độ

=>DE vuông góc AM