Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: AEHF nội tiếp
=>góc AEF=góc AHF=góc ACH
=>góc FEB+góc FCB=180 độ
=>BEFC nội tiếp
Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AFE
=>FE//Ax
=>AD vuông góc FE
a: ΔAHB vuông tại H
=>\(AB^2=BH^2+AH^2\)
=>\(AH^2+5,4^2=9^2\)
=>\(AH^2=9^2-5,4^2=51,84\)
=>AH=7,2(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC\cdot5,4=9^2=81\)
=>BC=15(cm)
BH+CH=BC
=>CH+5,4=15
=>CH=15-5,4=9,6(cm)
ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AC^2=9,6^2+7,2^2=144\)
=>AC=12(cm)
b:
Sửa đề: \(AH^3=BC\cdot BE\cdot CF\)
Xét ΔABH vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\) và \(CF\cdot CA=CH^2\)
=>\(CF=\dfrac{CH^2}{CA}\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=HB\cdot HC\)
Xét ΔACH vuông tại H có HF là đường cao
nên \(CF\cdot CA=CH^2;AF\cdot AC=AH^2\)
=>\(CF=\dfrac{CH^2}{CA}\)
\(BC\cdot BE\cdot CF=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)
\(=\dfrac{BC}{AB\cdot AC}\cdot BH^2\cdot CH^2\)
\(=\dfrac{BC}{AH\cdot BC}\cdot AH^4\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(AE\cdot AB=AH^2\)
=>\(AE\cdot9=7,2^2\)
=>\(AE=\dfrac{7.2^2}{9}=5,76\left(cm\right)\)
\(AE\cdot AB=AH^2\)
\(AF\cdot AC=AH^2\)
Do đó: \(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF đồng dạng với ΔACB
=>\(\dfrac{S_{AEF}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2=\left(\dfrac{5.76}{12}\right)^2=\dfrac{144}{625}\)
=>\(S_{AEF}=\dfrac{144}{625}\cdot S_{ACB}=\dfrac{144}{625}\cdot\dfrac{1}{2}\cdot12\cdot9=12,4416\left(cm^2\right)\)