Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K H d
^HAB + ^BAC + ^KAC = 180
^BAC = 90
=> ^HAB + ^KAC = 90
xét tam giác ABH vuông tại H => ^BAH + ^ABH = 90
=> ^KAC = ^ABH
xét tam giác CKA và tam giác AHB có : AB = AC do tam giác ABC cân tại A (gt)
^CKA = ^AHB = 90
=> tam giác CKA = tam giác AHB (ch-gn)
=> CK = AH (đn)
xét tam giác ABH vuông tại H => BH^2 + AH^2 = AB^2 (Pytago)
=> BH^2 + CK^2 = AB^2
=> BH^2 + CK^2 không phụ thuộc vào d
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a) Xét ΔABM và ΔCKM có:
MA=MC(gt)
MB=MK(gt)
góc BMA= góc CMK( 2 góc đối đỉnh )
=>ΔABM=ΔCKM( c.g.c)
=> góc MAB= góc MCK=90o
=>KC vuông góc với AC
b) Xét ΔBMC và ΔKMA có:
MA=MC(gt)
góc BMC= góc AMK( 2 góc đối đỉnh )
=>ΔBMC=ΔKMA(c.g.c)
=> góc MBC= góc MKA
=>BC//AK
a) Ta có: A1ˆ+A2ˆ+A3ˆ=180o( góc bẹt )
⇒A1ˆ+A3ˆ=90o( do A2ˆ=90o ) (1)
Trong ΔAKC có: A3ˆ+C1ˆ=90o( do Kˆ=90o) (2)
Từ (1) và (2) ⇒A1ˆ=C1ˆ
Xét ΔAHB,ΔCKA có:
A1ˆ=C1ˆ(cmt)
AB = AC ( gt )
H^=K^=90o
⇒ΔAHB=ΔCKA( c.huyền - g.nhọn )
⇒AH=CK( cạnh t/ứng ) ( đpcm )
b) Vì ΔAHB=ΔCKA
⇒BH=AK,AH=CK( cạnh t/ứng )
Ta có: HK=AK+AH=BH+CK(đpcm)
Vậy...
Chúc bạn học tốt
tui lớp 8 nè mà quên rồi
Em bít ....nhưng mà đợi em lên lớp 7 rùi em giải cho , em mới lớp 6 thui.