K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

H O G A B M C k

Ây za cách này khá là cùi bắp nhưng mà em tham khảo nhé:

Lấy điểm K đối xứng với C qua O

Xét tam giác CKB có: O là trung điểm CK , M là trung điểm BC

C K B O M N

Gọi N là điểm đối xứng với O qua M

Tam giác OCM=tam giác NBM

=> OC//BN

OC=BN

Tam giác OBN = tam giác BOK (1)

=> ON=KB

mà OM=1/2ON

=> OM=1/2KB

Từ (1) suy ra đc OM//KB

mà OM//AH ( cùng vuông Bc)

=> KB//AH (3)

Chứng minh tương tự => BH//KA (4)

Từ (3), (4) chứng minh đc tam giác KBA=HAB

=> KB=HA

=> OM=1/2 AH

Sử dụng định lí Ta let

OM//AH=> \(\frac{GM}{AG}=\frac{OM}{AH}=\frac{1}{2}\)

mà AM là đường trung tuyến

=> G là trọng tâm.

21 tháng 4 2019

Cô ơi...Lớp 7 đã học Ta-lét đâu ạ=((

8 tháng 6 2016

) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD

Xét Δ BCD có M là trung điểm BC, O là trung điểm CD  OM là đường trung bình của Δ BCD

 OM=12DB và OM // DB 

mà OM⊥BC ( OM là đường trung trực của BC )  DB⊥BC

mà AH⊥BC( AH là đường cao của ΔABC )  AH // DB

Xét ΔABH và ΔBAD có

HABˆ=DBAˆ( 2 góc so le trong do AH // DB )

AB chung

ABHˆ=BADˆ( 2 góc so le trong do AH // DB )


ΔABH=ΔBAD( g-c-g )

 AH = BD mà OM=12DB  OM=12AH 

 AH = 2 OM ( đpcm )

b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A

Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A  PQ là đường trung bình của \large\Delta AG'H 

PQ=12AH và PQ // AH

Do PQ=12AH mà OM=12AH PQ = OM

Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM

Xét ΔPQG′ và ΔOMG′ có

PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)

PQ = OM (c/m trên )

QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )


 ΔPQG′=ΔOMG′( g-c-g )

 G'Q = G'M và G'P = G'O

Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A )  G′M=12G′Amà G'M + G'A = AM 

 G′A=23AM mà AM là trung tuyến của ΔABC

 G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G

mà G′∈OH G∈OH  O, H, G thẳng hàng ( đpcm )

Hên xui nghe bạn ^ ^

8 tháng 6 2016

Quyết Kiếm Sĩ:hên sui cái j copy trên mạng mà nổ wa :D

23 tháng 5 2015

mjk bik giải mà hjnh dài quá

8 tháng 8 2016

a) Ta có :
OD//HB,OE//HC,DE//BC.
ODE^=HBC^ và  OED^=HCB^ (hai góc nhọn có các cạnh tương ứng vuông góc ).
ODE^∼HBC^(c.g.c)
b) Vì G là trọng tâm của tam giác ABC, nên GDGB=12
Mặt khác DOBH=DEBC=12 , do đó DGBG=DOBH=12, lại có  ODG^=GBH^ ( hai góc so le trong ).                           
Vậy △ODG∼△HBG(c.g.c)
c) △ODG∼△HBG ( theo câu b ) , nên OGD^=BGH^, BGH^+HGD^=1800 ,nên OGD^+DGH^=1800, suy ra ba điểm O, G, H thẳng hàng,đồng thời có:
OGGH=ODBH=12 , do đó GH=2OG.
Chú ý:Đường thẳng đi qua ba điểm H, G, O nói trên gọi là đường thẳng Ơle.