\(\Delta ABC\) NHỌN AM,TRUNG TUYẾN AM.GỌI H LÀ TRỰC TÂM,O LÀ GIAO ĐIỂM CỦA CÁC ĐƯỜNG T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).

 Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm

Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm

Bài 2:

E D B C A H

a) Xét \(\Delta\)ABD và \(\Delta\)ACE:

      ADB=AEC=90

      BAC:chung

      AB=AC(\(\Delta\)ABC cân tại A)

=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)

b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A

c) Dễ thấy: H là trực tâm của tam giác ABC

    Mà  \(\Delta\)ABC cân tại A 

    Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC 

    Hay AH là đường trung trực của tam giác ABC

a) Theo định lí pytago vào tam giác ABC:
BC2=AB2+AC2
=>BC^2=9^2+12^2
=>BC^2=81+144
=>BC^2=225
=>BC^2=căn 225=15 cm.(theo giả thiết cho cũng bằng 15 cm)
Vậy tam giác ABC vuông tại A
b) Vì MH=MK mà MH vuông góc với AC, MK là tia đối của MH nên tam giác KMB vuông tại K
Xét 2 tam giác MHC và MKB có:
MH = MK theo giả thiết
MB = MC vì AM là trung tuyến ứng với với BC
góc H = góc K = 90 độ
=> 2 tam giác trên bằng nhau.(cạnh huyền-cạnh góc vuông)
=> góc KMB = góc HMC.
Mặt khác, hai góc KMB và HMC ở vị trí so le trong nên BK//HC hay BK//AC.(còn một cách cm nữa)
c) Xét hai tam giác vuông MHA và MHC có:
MH chung
MA=MC vì AM là trung tuyến ứng với BC
góc MHA = góc MHC = 90 độ
=> tam giác MHA = tam giác MHC. (cạnh huyền - cạnh góc vuông)
=> HA=HC
=> H là trung điểm của BC
=> BH là trung tuyến ứng với AC
Vì AM, BC là các trung tuyến mà hai trung tuyến này(AM, BC) cắt tại G nên G là trọng tâm của tam giác ABC

12 tháng 4 2019

Ko có hình hả bn?

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.3/ Cho tam giác nhọn ABC. H là trực tâm:CMR: a) HA+HB+HC<AB+AC           b)...
Đọc tiếp

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.

2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.

3/ Cho tam giác nhọn ABC. H là trực tâm:

CMR: a) HA+HB+HC<AB+AC

           b) HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)

4/ Cho \(\Delta ABC\) vuông tại A. Gọi I là giao điểm của các đường phân giác ABC. Vẽ \(ID\perp AB\) tại D. CMR AB+AC-BC=2ID

5/ Cho \(\Delta ABC\) vuông tại A. AH là đường cao. Gọi I,K,S lần lượt là giao điểm các đường phân giác của \(\Delta ABC\)\(\Delta ABH\)\(\Delta ACH\). Vẽ \(II'\perp BC\) tại I', \(KK'\perp BC\) tại K', \(SS'\perp BC\) tại S'. CMR: SS'+II'+KK'=HA

0