K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

A B C H E F D I

Phần c) trước hết ta chứng minh HD là phân giác của \(\widehat{FID}\)

21 tháng 3 2021

Xét \(\Delta DBH\)và \(\Delta EBC\)

\(\widehat{BDH}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{CBE}\)chung

\(\Delta DBH\approx\Delta EBC\left(g.g\right)\)

\(\Rightarrow\frac{BD}{BE}=\frac{BH}{BC}\)(2 cặp cạnh tương ứng tỉ lệ)

\(\Rightarrow\frac{BD}{BH}=\frac{BE}{BC}\)(tính chất của tỉ lệ thức) 

Xét \(\Delta BDE\)và \(\Delta BHC\)có:

\(\widehat{CBE}\)chung

\(\frac{BD}{BH}=\frac{BE}{BC}\)(chứng minh trên)

\(\Delta BDE\approx\Delta BHC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BED}=\widehat{BCH}\)(2 góc tương ứng)

\(\Rightarrow\widehat{BED}=\widehat{BCF}\)

Ta có:

 \(\widehat{BED}+\widehat{DEC}=90^0\left(=\widehat{BEC}\right)\)

\(\Rightarrow\widehat{BCF}+\widehat{DEC}=90^0\)

Và vì \(\Delta FBC\)vuông tại F

\(\Rightarrow\widehat{BCF}+\widehat{FBC}=90^0\)(vì phu nhau)

Do đó :\(\widehat{DEC}=\widehat{FBC}\)(cùng phụ với \(\widehat{BCF}\))

\(\Rightarrow\widehat{DEC}=\widehat{FBD}\)

Chứng minh tương tự, ta được: \(\widehat{BFD}=\widehat{ECD}\)

Xét \(\Delta BFD\)và \(\Delta ECD\)có:

\(\widehat{BFD}=\widehat{ECD}\)(chứng minh trên)

\(\widehat{FBD}=\widehat{CED}\)(chứng minh trên)

\(\Rightarrow\Delta BFD\approx\Delta ECD\left(g.g\right)\)

\(\Rightarrow\widehat{BDF}=\widehat{EDC}\)(2 góc tương ứng)

13 tháng 5 2018

b) Xét tam giác AEF và tam giác ABC :

Góc BAC chung

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

⇒ Tam giác AEF ~ tam giác ABC

⇒ góc AEF = góc ABC ( đề sai nhé )

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc A chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

11 tháng 3 2019

A B C E F H I

Giải

a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:

\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)

\(\widehat{BFH}=\widehat{CEH}=90^o\)

=> \(\Delta BHF\)  s  \(\Delta CHE\) (g - g)

b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat{A}\) là góc chung

\(\widehat{AEB}=\widehat{AFC}=90^o\)

=> \(\Delta ABE\)  s  \(\Delta ACF\) (g - g)

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

=> AF . AB = AE . AC

c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{A}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\)

=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)

d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.

13 tháng 5 2018

mk chỉnh lại đề: Cho tam giác ABC nhọn đường cao BE, CF.....

a)   Xét  \(\Delta ABE\)và    \(\Delta ACF\) có:

       \(\widehat{A}\) chung

      \(\widehat{AEB}=\widehat{AFC}=90^0\)

suy ra:   \(\Delta ABE~\Delta ACF\)(g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AE}{AF}\)

\(\Rightarrow\)\(AB.AF=AE.AC\)

b)  \(\frac{AB}{AC}=\frac{AE}{AF}\) (câu a)

\(\Rightarrow\)\(\frac{AB}{AE}=\frac{AC}{AF}\)

Xét  \(\Delta ABC\)và    \(\Delta AEF\)có:

      \(\widehat{A}\)chung

   \(\frac{AB}{AE}=\frac{AC}{AF}\)

suy ra:   \(\Delta ABC~\Delta AEF\)(c.g.c)

\(\Rightarrow\)\(\widehat{ACB}=\widehat{AFE}\)

2 tháng 5 2022

Helps me !!!

 

26 tháng 4 2018

a)  Xét  \(\Delta AEB\) và   \(\Delta AFC\) có:

     \(\widehat{AEB}=\widehat{AFC}=90^0\)

     \(\widehat{A}\)  chung

suy ra:   \(\Delta AEB~\Delta AFC\) (g.g)

\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\) \(\Rightarrow\)\(AF.AB=AE.AC\)

b)   \(\frac{AE}{AF}=\frac{AB}{AC}\)\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\) có:

           \(\frac{AE}{AB}=\frac{AF}{AC}\)  (cmt)

           \(\widehat{A}\) chung

suy ra:   \(\Delta AEF~\Delta ABC\) (c.g.c)

\(\Rightarrow\)   \(\widehat{AEF}=\widehat{ABC}\)

c)   \(\Delta AEF~\Delta ABC\)

\(\Rightarrow\)\(\frac{S_{ABC}}{S_{AEF}}=\left(\frac{AB}{AE}\right)^2=\left(\frac{3}{6}\right)^2=\frac{1}{4}\)

\(\Rightarrow\)\(S_{ABC}=4S_{AEF}\)

29 tháng 3 2022

Gửi các bạn lời giải 1 bài tương tự

https://youtu.be/mjiZSkISHgA