K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

mk chỉnh lại đề: Cho tam giác ABC nhọn đường cao BE, CF.....

a)   Xét  \(\Delta ABE\)và    \(\Delta ACF\) có:

       \(\widehat{A}\) chung

      \(\widehat{AEB}=\widehat{AFC}=90^0\)

suy ra:   \(\Delta ABE~\Delta ACF\)(g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AE}{AF}\)

\(\Rightarrow\)\(AB.AF=AE.AC\)

b)  \(\frac{AB}{AC}=\frac{AE}{AF}\) (câu a)

\(\Rightarrow\)\(\frac{AB}{AE}=\frac{AC}{AF}\)

Xét  \(\Delta ABC\)và    \(\Delta AEF\)có:

      \(\widehat{A}\)chung

   \(\frac{AB}{AE}=\frac{AC}{AF}\)

suy ra:   \(\Delta ABC~\Delta AEF\)(c.g.c)

\(\Rightarrow\)\(\widehat{ACB}=\widehat{AFE}\)

13 tháng 5 2018

b) Xét tam giác AEF và tam giác ABC :

Góc BAC chung

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

⇒ Tam giác AEF ~ tam giác ABC

⇒ góc AEF = góc ABC ( đề sai nhé )

13 tháng 5 2018

Bài 1:

a) xét tg ABE và tg ACF có:

AEB = AFC = 90 độ

BAE = CÀ( A chung )

=> tg ABE = tg ACF ( g.g)

=> AF/AB = AE/AC

=> AE*AC = AF*AB

21 tháng 3 2021

A B C H E F D I

Phần c) trước hết ta chứng minh HD là phân giác của \(\widehat{FID}\)

21 tháng 3 2021

Xét \(\Delta DBH\)và \(\Delta EBC\)

\(\widehat{BDH}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{CBE}\)chung

\(\Delta DBH\approx\Delta EBC\left(g.g\right)\)

\(\Rightarrow\frac{BD}{BE}=\frac{BH}{BC}\)(2 cặp cạnh tương ứng tỉ lệ)

\(\Rightarrow\frac{BD}{BH}=\frac{BE}{BC}\)(tính chất của tỉ lệ thức) 

Xét \(\Delta BDE\)và \(\Delta BHC\)có:

\(\widehat{CBE}\)chung

\(\frac{BD}{BH}=\frac{BE}{BC}\)(chứng minh trên)

\(\Delta BDE\approx\Delta BHC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BED}=\widehat{BCH}\)(2 góc tương ứng)

\(\Rightarrow\widehat{BED}=\widehat{BCF}\)

Ta có:

 \(\widehat{BED}+\widehat{DEC}=90^0\left(=\widehat{BEC}\right)\)

\(\Rightarrow\widehat{BCF}+\widehat{DEC}=90^0\)

Và vì \(\Delta FBC\)vuông tại F

\(\Rightarrow\widehat{BCF}+\widehat{FBC}=90^0\)(vì phu nhau)

Do đó :\(\widehat{DEC}=\widehat{FBC}\)(cùng phụ với \(\widehat{BCF}\))

\(\Rightarrow\widehat{DEC}=\widehat{FBD}\)

Chứng minh tương tự, ta được: \(\widehat{BFD}=\widehat{ECD}\)

Xét \(\Delta BFD\)và \(\Delta ECD\)có:

\(\widehat{BFD}=\widehat{ECD}\)(chứng minh trên)

\(\widehat{FBD}=\widehat{CED}\)(chứng minh trên)

\(\Rightarrow\Delta BFD\approx\Delta ECD\left(g.g\right)\)

\(\Rightarrow\widehat{BDF}=\widehat{EDC}\)(2 góc tương ứng)

10 tháng 5 2020

a) xét \(\Delta ACF\) và \(\Delta ABE\)

\(\widehat{BAC}\left(chung\right)\)

\(\widehat{AFC}=\widehat{AEB}=90^0\)

\(\Rightarrow\Delta ACF\) đồng dạng \(\Delta ABE\)

\(\Rightarrow\frac{AC}{AF}=\frac{AB}{AE}\)

\(\Rightarrow AC\cdot AE=AF\cdot AB\left(dpcm\right)\)

10 tháng 5 2020

b) Theo cmt: \(\Delta ACF\text{đồng dạng}\Delta ABE\)

\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\)

xét \(\Delta AFE\)\(\Delta ACB\)

\(\widehat{BAC}\left(chung\right)\)

\(\frac{AE}{AF}=\frac{AB}{AC}\) (cmt)

\(\Rightarrow\)\(\Delta AFE\)đồng dạng \(\Delta ACB\)(dpcm)