K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 12 2021

\(MA^2+MB^2=\overrightarrow{MA}.\overrightarrow{MA}+\overrightarrow{MB}.\overrightarrow{MB}=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\)

\(=\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IA}+\overrightarrow{IA}.\overrightarrow{IA}+\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IB}+\overrightarrow{IB}.\overrightarrow{IB}\)

\(=2MI^2+IA^2+IB^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)\)

\(=2MI^2+IA^2+IB^2\)

\(=2MI^2+\left(\frac{a}{2}\right)^2+\left(\frac{a}{2}\right)^2=a^2\)

\(\Leftrightarrow MI^2=\frac{a^2}{4}\)

Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(\frac{a}{2}\).

23 tháng 7 2018

a) ta có : \(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BN}\) \(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\left|\overrightarrow{BN}\right|=2BN\)

\(=2\left(AB^2-NA^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)

b) \(\overrightarrow{NB}\)

c) ta có : \(\overrightarrow{NA}+\overrightarrow{MB}+\overrightarrow{PC}=\overrightarrow{NA}+\overrightarrow{AM}+\overrightarrow{PC}=\overrightarrow{NM}+\overrightarrow{PC}\)

\(=\overrightarrow{NM}+\overrightarrow{MN}=\overrightarrow{0}\left(đpcm\right)\)

d) ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{MC}\)

\(\overrightarrow{MC}+\overrightarrow{MC}=2\overrightarrow{MC}\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}\right|=2\left|\overrightarrow{MC}\right|=2MC\)

\(=2\left(AC^2-AM^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)

23 tháng 9 2018

Trên đoạn AM, lấy điểm C sao cho AC = MB = 20

\(\Rightarrow\overrightarrow{AC}=\overrightarrow{MB}\)

Ta có: \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{AC}\right|=\left|\overrightarrow{MC}\right|=MC=10\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA=50\)