K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

Gia sử AB < AC

Vẽ BM , CN // DE , vẽ trung tuyến AF => A;F;G thẳng hàng ; AF = 3/2 AG

Tam giác BMF = tam giác CNF ( g.c.g )

=> MF = NF

Có : BM , CN // DE

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD + AC/AE = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3

P/S : tham khảo

9 tháng 2 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

21 tháng 12 2024

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha

9 tháng 2 2018

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha

3 tháng 2 2022

a) -Xét △ABM có: \(EG\)//\(BM\) (gt)

=>\(\dfrac{BE}{AE}=\dfrac{MG}{AG}\) (định lí Ta-let).

=>\(BE.AG=AE.MG\).

b) -Ta có: \(BM\)//\(d\) (gt) ; \(CN\)//\(d\) (gt)

=>\(BM\)//\(CN\).

- Xét △BMD và △CND có:

\(\widehat{BMD}=\widehat{CND}\) (\(BM\)//\(CN\) và so le trong).

\(BD=CD\) (D là trung điểm AB).

\(\widehat{BDM}=\widehat{CDN}\) (đối đỉnh).

=>△BMD = △CND (c-g-c).

=>\(MD=ND\) (2 cạnh tương ứng).

*\(GM+GN=GD-MD+GD+ND=2GD\)

 

14 tháng 7 2023

AE=ED phải không bạn?

14 tháng 7 2023

A B C D E G

Đề bài phải sửa thành AE=ED

a/

Xét tg ABC

DE//AB (gt)

BD=CD (gt)

=> AE=CE (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) (1)

Mà DE=AE (gt) (2)

Từ (1) và (2) => DE=AE=CE (3)

Ta có

BD=CD (gt); AE=CE (cmt) => DE là đường trung bình của tg ABC

\(\Rightarrow DE=\dfrac{AB}{2}\) (4)

Từ (3) và (4) \(\Rightarrow DE=AE=CE=\dfrac{AB}{2}\)

\(\Rightarrow AE+CE=AB\) Mà \(AE+CE=AC\Rightarrow AB=AC\)

=> tg ABC cân tại A

b/

Xét tg ABC có

AD là trung tuyến (gt)

AE=CE (cmt) => BE là trung tuyến

=> G là trọng tâm của tg ABC (Trong tg 3 đường trung tuyến đồng quy tại 1 điểm gọi là trọng tâm của tg)

 

 

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0