K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

+) Vì M là trung điểm của BC 

=> MB=MC

+) Xét tam giác BMA và tam giác CMA, có:

AB=AC (gt)

MB=MC (cmt)

Cạnh AM chung 

=> tam giác BMA= tam giác CMA (c.c.c)

=> góc BAM=góc CAM ( đ/n 2 góc tương ứng bằng nhau) (1)

+) Vì M là trung điểm của BC nên AM nằm giữa 2 tia AB và AC (2)

Từ (1,2)

=> AM là tia phân giác của góc BAC (đpcm)

20 tháng 9 2016

c) Cách 1:

Xét ΔABC cân tại A, có AM  là phân giác nên đồng thời là trung trực 

Vậy AM là đường trung trực của BC.

Cách 2:

Ta có Δ AMB = ΔAMC(Cm câu a)

       =>  AMB = AMC(2 góc t/ư)

lại có    AMB + AMC = 180o (kề bù)

      => 2AMB = 180o

      => AMB = AMC = 90o

  Hay AM vuông góc BC

Mà MB = MC (GT)

=> AM là trung trực của BC(đpcm)

29 tháng 9 2016

có thể cho mình xem câu trả lời của câu a và b ko

vui

20 tháng 12 2021

a) Xét ΔABH,ΔAKHΔABH,ΔAKH có:
BH=HK(gt)BH=HK(gt)

ˆAHB=ˆAHKAHB^=AHK^

AH: cạnh chung

⇒ΔABH=ΔAKH(c−g−c)⇒ΔABH=ΔAKH(c−g−c)

b) Vì ΔABH=ΔAKHΔABH=ΔAKH

⇒AB=AK⇒AB=AK ( cạnh tương ứng ) (1)

Xét ΔAMK,ΔCMEΔAMK,ΔCME có:

AM=MC(=12AC)AM=MC(=12AC)

ˆM1=ˆM2M1^=M2^ ( đối đỉnh )

EM=KM(gt)EM=KM(gt)

⇒ΔAMK=ΔCME(c−g−c)⇒ΔAMK=ΔCME(c−g−c)

⇒EC=AK⇒EC=AK ( cạnh tương ứng ) (2)

Từ (1) và (2) ⇒EC=AB(=AK)⇒EC=AB(=AK)

c) Xét ΔAMEΔAME và ΔCMKΔCMK có:
AM=MC(=12AC)AM=MC(=12AC)

ˆM3=ˆM4M3^=M4^ ( đối đỉnh )

KM=EM(gt)KM=EM(gt)

⇒ΔAME=ΔCMK(c−g−c)⇒ΔAME=ΔCMK(c−g−c)

⇒ˆE1=ˆK1⇒E1^=K1^ ( góc tương ứng )

Mà ˆE1E1^ và ˆK1K1^ ở vị trí so le trong nên AE // KC hay AE // BC

Vậy a) ΔABH=ΔAKH

18 tháng 2 2020

ABCtx

a) Xét  △AMB và  △AMC có:

    AB = AC ( gt)

    AM chung

    BM = MC (gt)

\(\Rightarrow\) △AMB = △AMC (c.c.c)

b) Ta có : △AMB =  △AMC

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) ( 2 góc tương ứng)

\(\Rightarrow\) AM là tia phân giác của \(\widehat{BAC}\) (ĐPCM)

c) Ta có: \(\widehat{BMA}+\widehat{CMA}=180^o\) ( kề bù)

   Mà       \(\widehat{BMA}=\widehat{CMA}\) (△AMB =  △AMC)

\(\Rightarrow\widehat{BMA}=\widehat{CMA}=\frac{180^o}{2}=90^o\)

\(\Rightarrow\) AM ⊥ BC (ĐPCM)

d) Gọi tia đối của tia AC là tia Ax.

Vì At là tia phân giác \(\widehat{xAB}\)

\(\Rightarrow\widehat{xAt}=\widehat{tAB}\)

Vì △ABC cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Ta có :\(\widehat{xAB}=\widehat{ABC}+\widehat{ACB}\)

\(\Rightarrow\widehat{xAt}+\widehat{tAB}=\widehat{ABC}+\widehat{ABC}\)

\(\Rightarrow2\widehat{tAB}=2\widehat{ABC}\)

\(\Rightarrow\widehat{tAB}=\widehat{ABC}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)At // BC (ĐPCM)

1 tháng 8 2017

Hình NÀY mà, bn tự vẽ nha:

a, Do AB =AC ( gt)

=> tam giác ABC cân tại A

=> Góc ABI = góc ACI

Xét tam giác ABI và tam giÁC ACI có:

AB =AC ( gt)

ABI =ACI ( c/m trên)

BI = CI ( gt)

=> tam giác ABI= tam gics ACI (c.g.c)

=> góc BAI = GÓC CAI (2 GÓC TƯƠNG ỨNG)

=> AI LÀ TIA PHÂN GIÁC GÓC BAC

b, TỐI MIK BÀY TIẾP GIUWF MIK BẬN QUÁ