Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔBCD có
BA là đường trung tuyến
BA là đường cao
Do đó: BCD cân tại B
c: OA=1/3AB=1(cm)
\(OC=\sqrt{1^2+4^2}=\sqrt{17}\left(cm\right)\)
a)
Xét tam giác vg ABC và tam giác vg ABD
có:AB là cạnh chung
AD=AC(gt)
->tam giác ABC =tam giác ABD(2 cạnh góc vg)
->BD=BC(2 cạnh tương ứng)
=> tam giác BDC cân tại B
b)
Ta có :CE là dường trung tuyến của BD(BE=ED)
AB là đường trung tuyến của DB(AD=AC)
O là trọng tâm của tam giác ABC(O là giao của 2 đường trung tuyến)
->OA=1/3của AB
->OA=1/3.a
c)
để CE vg góc vs BD thì AC =1/2CB(Câu này mik ko chắc chắn lắm nha)
PN GHI ĐỀ SAI RỒI
1)
a)Áp dụng định lý py ta go vao tam giác ABC ta có
32+42=25
52=25
->32+42=52
->AB2+AC2=BC2
=>Tam giác ABC vg tại A
b)
ta có :AB đối diện vs góc C
AC" " " " B
BC " " " " A
mà BC>AC>AB(5>4>3)
=>góc A>góc B >góc C
(đề 2 có gì đó sai sai bn ơi)
A B C D 3cm 4cm 5cm
a) Ta có: \(AB^2+AC^2=3^2+4^2=25\Rightarrow BC^2=5^2=25\)
\(\Rightarrow AB^2+AC^2=BC^2\)(định lý đảo py-ta-go)
\(\Rightarrow\Delta ABC\)vuông tại A
b) Theo câu a, tam giác ABC vuông tại A\(\Rightarrow BA\perp DC\)
Mà AC=AD (gt)
=> BA là đường cao và đồng thời là đường trung tuyến của tam giác BCD
=> tam giác BCD cân tại B
Bài làm
a) Ta có: BC2 = 52 = 25 cm
AC2 + AB2 = 32 + 42 = 25 cm
=> BC2 = AC2 + AB2
=> Tam giác ABC vuông tại A ( theo Pytago đảo )
b) Xét tam giác BAD và tam giác BAC có:
AD = AC ( gt )
^BAD = ^BAC = 90o
AB chung
=> Tam giác BAD = tam giác BAC ( c.g.c )
=> BD = BC ( hai cạnh tương ứng )
=> tam giác BCD cân tại B