Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AB^2+AC^2=3^2+4^2=25\Rightarrow BC^2=5^2=25\)
\(\Rightarrow AB^2+AC^2=BC^2\)(định lý đảo py-ta-go)
\(\Rightarrow\Delta ABC\)vuông tại A
b) Theo câu a, tam giác ABC vuông tại A\(\Rightarrow BA\perp DC\)
Mà AC=AD (gt)
=> BA là đường cao và đồng thời là đường trung tuyến của tam giác BCD
=> tam giác BCD cân tại B
Bài làm
a) Ta có: BC2 = 52 = 25 cm
AC2 + AB2 = 32 + 42 = 25 cm
=> BC2 = AC2 + AB2
=> Tam giác ABC vuông tại A ( theo Pytago đảo )
b) Xét tam giác BAD và tam giác BAC có:
AD = AC ( gt )
^BAD = ^BAC = 90o
AB chung
=> Tam giác BAD = tam giác BAC ( c.g.c )
=> BD = BC ( hai cạnh tương ứng )
=> tam giác BCD cân tại B
1: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
2: Xét ΔBCD có
BA là đường cao
BA là đường trung tuyến
Do đó: ΔBCD cân tại B
3: Xét ΔBCD có
BA là đường trung tuyến
CE là đường trung tuyến
BA cắt CE tại G
Do đó: G là trọng tâm của ΔBCD
=>AG=1/3BA=1(cm)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔBCD có
BA là đường trung tuyến
BA là đường cao
Do đó: BCD cân tại B
c: OA=1/3AB=1(cm)
\(OC=\sqrt{1^2+4^2}=\sqrt{17}\left(cm\right)\)