K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

A B C H O K

a) Chứng minh \(AB.AC=2R.AH\).Nối đường kính BK là thấy liền.Ta sẽ chứng minh \(\Delta ABK~\Delta HAC\).Đến đây thì Ez rùi 

b)Lợi dụng câu a ta có:

\(AB.AC=2R.AH\Rightarrow AB.AC.BC=2RAH.BC=4R.SABC\)hay \(S_{ABc}=\frac{AB.BC.CA}{4R}\)

a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

b: \(\widehat{HEF}=\widehat{QCB}\)

\(\widehat{HPQ}=\widehat{QCB}\)

Do đó: \(\widehat{HEF}=\widehat{HPQ}\)

=>EF//QP

19 tháng 1 2017

Bao giờ bạn cần. Để mai mình suy nghĩ làm được k?

20 tháng 1 2017

viết thiếu rùi bạn phải thêm BC là đường kính của đường tròn nữa

9 tháng 7 2017

A B C D E O H F

a) Tự chứng minh 

b) Diện tích của tứ giác có 2 đường chéo vuông góc với nhau là nửa tích 2 đường chéo.

Theo câu a, \(OA⊥EF\)nên \(S_{AEOF}=\frac{1}{2}OA.EF=\frac{1}{2}R.EF\)

tương tự:\(S_{BDOF}=\frac{1}{2}DF.OB=\frac{1}{2}R.DF\);\(S_{DOEC}=\frac{1}{2}.OC.DE=\frac{1}{2}R.DE\)

\(\Rightarrow S_{AEOF}+S_{BDOF}+S_{DOEC}=\frac{1}{2}R.P\)

hay \(S_{ABC}=\frac{1}{2}R.P=\frac{1}{4}.2RP\le\frac{R^2+P^2}{4}\)(Theo BĐT AM-GM)

19 tháng 2 2022

AH vuông góc BC và KB vuông góc CB nên AH//BK

Lại có BH vuông góc AC và KA vuông góc CA nên HB//AK

Xét tứ giác AHBK có: AH//BK và HB//AK nên AHBK là hình bình hành

Suy ra AH=BK

Xét (O;R) có:

CK là đường kính của (O;R)

Điểm C; B; K thuộc (O;R)

Suy ra: tam giác CBK vuông tại B

Áp dụng dịnh lý py-ta-go cho tam giác CBK vuông tại B

Có: BK^2+CB^2=CK^2

Mà AH=BK(cmt)

Suy ra: AH^2+ BC^2=CK^2            (1)

Có CK là đường kính 

Suy ra CK=2R tương đương CK^2=4R^2            (2)

Adđl py-ta-go cho các tam giac AA'B; CHA'; BAB'; BB'C

Có: AB^2=AA'^2+BA'^2

      CH^2=CA'^2+HA'^2

      AH^2=AB'^2+HB'^2

      BC^2=BB'^2+B'C^2

Suy ra: AB^2+CH^2=( AA'^2+CA'^2 ) + ( BA'^2+HA'^2 )= AC^2+BH^2     (3)

=) AH^2+BC^2= BB'^2+AB'^2+HB'^2+B'C^2=AB^2+CH^2              (4)

Từ (1) ; (2) ;(3) và (4) =) AH^2+BC^2= BH^2+AC^2=CH^2+AB^2=4R^2 (đpcm)

undefined

17 tháng 8 2019

a) Gọi AD là đường kính của ( O ; R ) 

Có: \(\Delta ADC\) nội tiếp đường tròn ( O ; R ) có O là trung điểm của AD \(\Rightarrow\)\(\Delta ADC\) vuông tại C 

Xét 2 tam giác vuông ABH và ADC có: ^ABH = ^ADC ( cùng chắn cung AC ) \(\Rightarrow\)\(\Delta ABH~\Delta ADC\) ( g - g ) 

\(\Rightarrow\)\(\frac{AB}{AD}=\frac{AH}{AC}\) hay \(\frac{c}{2R}=\frac{h}{b}\)\(\Leftrightarrow\)\(bc=2Rh\)

b) từ a ta có: \(bc=2Rh\)\(\Leftrightarrow\)\(\frac{abc}{4R}=\frac{2Rhc}{4R}=\frac{1}{2}hc=S_{ABC}\) ( đpcm )