K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

A B C H O K

a) Chứng minh \(AB.AC=2R.AH\).Nối đường kính BK là thấy liền.Ta sẽ chứng minh \(\Delta ABK~\Delta HAC\).Đến đây thì Ez rùi 

b)Lợi dụng câu a ta có:

\(AB.AC=2R.AH\Rightarrow AB.AC.BC=2RAH.BC=4R.SABC\)hay \(S_{ABc}=\frac{AB.BC.CA}{4R}\)

21 tháng 10 2017

đăngg nhiều vậy linh, mà  đã làm đến đề đó rồi cơ à chăm thế

9 tháng 7 2017

A B C D E O H F

a) Tự chứng minh 

b) Diện tích của tứ giác có 2 đường chéo vuông góc với nhau là nửa tích 2 đường chéo.

Theo câu a, \(OA⊥EF\)nên \(S_{AEOF}=\frac{1}{2}OA.EF=\frac{1}{2}R.EF\)

tương tự:\(S_{BDOF}=\frac{1}{2}DF.OB=\frac{1}{2}R.DF\);\(S_{DOEC}=\frac{1}{2}.OC.DE=\frac{1}{2}R.DE\)

\(\Rightarrow S_{AEOF}+S_{BDOF}+S_{DOEC}=\frac{1}{2}R.P\)

hay \(S_{ABC}=\frac{1}{2}R.P=\frac{1}{4}.2RP\le\frac{R^2+P^2}{4}\)(Theo BĐT AM-GM)

 Xét tam giác ABC có I là tâm đường tròn nội tiếp

\(\Rightarrow S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}AB.r+\frac{1}{2}BC.r+\frac{1}{2}CA.r\)

\(=\frac{1}{2}\left(AB+BC+CA\right).r=p.r\)

\(\Rightarrow r=\frac{S_{ABC}}{p}\)

29 tháng 6 2019

Gọi I là tâm đường tròn bàng tiếp góc A của tam giác ABC

Ta có:

SABC=SABI+SACI−SBIC
          
=Rb/2 + Rc/2 − Ra/ 2

        =R. (b+c−a/2)

        =R(p−a)

=> R = S/(p-a) (đpcm)

16 tháng 8 2019

A B C M I r D E F

a) Gọi tâm của đường tròn nội tiếp \(\Delta\)ABC là I. (I) tiếp xúc với BC,CA,AB tại D,E,F

Ta có \(S_{BIC}=\frac{1}{2}ID.BC=r.\frac{BC}{2}\). Tương tự \(S_{CIA}=r.\frac{CA}{2};S_{AIB}=r.\frac{AB}{2}\)

Vậy \(S_{ABC}=r.\frac{BC+CA+AB}{2}=pr\)(đpcm).

b) Đặt \(BC=a,CA=b,AB=c,AM=m_A,BM=m_B,CM=m_C\)

Áp dụng công thức tính đường trung tuyến có \(m_A=\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{2}\)

\(\Rightarrow\frac{1}{m_A}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}\), Hoàn toàn tương tự đối với \(m_B,m_C\)

Từ đó \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{2}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{2}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)

Lại có \(r=\frac{S}{p}=\frac{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{p}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}\)(Công thức Heron)

\(=\frac{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}{2\sqrt{a+b+c}}\)

Kết hợp với giả thiết \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{1}{r}\) suy ra:

\(\frac{1}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{1}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{1}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)

\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)(1)

Áp dụng BĐT Cauchy: \(VT_{\left(1\right)}\le\frac{1}{\sqrt{\left(b+c\right)^2-a^2}}+\frac{1}{\sqrt{\left(c+a\right)^2-b^2}}+\frac{1}{\sqrt{\left(a+b\right)^2-c^2}}\)

\(=\frac{1}{\sqrt{a+b+c}}.\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}+\sqrt{\left(b+c-a\right)\left(c+a-b\right)}+\sqrt{\left(c+a-b\right)\left(a+b-c\right)}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)\(\le\frac{1}{\sqrt{a+b+c}}.\frac{a+b+c}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)

\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}=VP_{\left(1\right)}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)<=> \(\Delta\)ABC đều (đpcm).