Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet tam giac ABC va tam giac CDA co
AD=BC (gt)
BC=AD(gt)
AC là cạnh chung
=>tam giac abc = tam giac cda (c.c.c)
Ma goc BAC = goc DCA (nam o vi tri so le trong )
=>AB//CD
A B H C D \(\Delta ABC\)Và \(\Delta CDA\)Có
AD=BC(gt)
AC: Cạnh chung
AB=CD)gt)
=> \(\Delta ABC=\Delta CDA\left(C-C-C\right)\)
=>\(\widehat{BAC}=\widehat{DCA}\);\(\widehat{ACB}=\widehat{CAD}\)
Mà các góc này ở vị trí SLT
=>AB//CD(dpcm)
BC//AD mà \(AH\perp BC\)=>\(AH\perp AD\)(Dpcm)
Ta có hình vẽ:
D A B C H
Xét Δ CDA và Δ ABC có:
AD = BC (gt)
CD = AB (gt)
AC là cạnh chung
Do đó, Δ CDA = Δ ABC (c.c.c)
=> DAC = ACB (2 góc tương ứng)
Mà DAC và ACB là 2 góc ở vị trí so le trong
=> AD // BC (1)
Lại có: AH \(\perp\)BC => AH \(\perp\) AD (2)
Từ (1) và (2) => đpcm
Phạm Hoàng GiangTRẦN MINH HOÀNGNgô Thu TrangThien Tu BorumShizadonAce LegonaRain Tờ Rym TeTrịnh Ánh NgọcngonhuminhNguyễn Thanh Hằng
Ta có hình vẽ:
A B C H B D
Xét Δ CDA và Δ ABC có:
CD = AB (gt)
AC là cạnh chung
DA = BC (gt)
Do đó, Δ CDA = Δ ABC (c.c.c)
=> góc DAC = góc BCA (2 góc tương ứng)
Mà DAC và BCA là 2 góc ở vị trí so le trong nên AD // BC (đpcm)
Lại có: \(AH\perp BC\) nên \(AH\perp AD\) (đpcm)
Xét \(\Delta\)ABC và \(\Delta\)CDA, có:
AB=CD (gt)
CB=AD (gt)
AC: cạnh chung
Do đó: \(\Delta\)ABC=\(\Delta\)CDA (c.c.c)
=> gócBAC=gócDCA (hai góc tương ứng)
=>AB//CD
Ta có:\(\Delta\)ABC=\(\Delta\)CDA(cmt)=>AD//BC
..........................................Mà AH\(\perp\)BC
\(\Rightarrow AH\perp AD\left(đpcm\right)\)
Ta có: AE vuông góc với AC nên góc EAC=900
Có AD vuông góc với AB nên góc BAD=900
Xét TG DAE và TG CAB có:
AD=AB(GT)
AC=AE(GT)
EAC=BAD=900(C/M trên)
do đó, TG DAE=TG CAB(c.g.c)
=>Góc DEA=góc CAB
có: góc EAC+góc EAD=1800(2 góc kề bù)
hay 900+góc EAD=1800
=>góc EAD=1800-900=900
=>Góc DEA=góc CAB=900
=>BE vuông góc với CD
Vậy _______________________
thật ra cách của mk ngắn hơn v nhưng để xét 2 cái cho chắc nên làm cả 2 góc dea vs cab luôn
cậu tự vẽ hình đi, mk ko chắc chắn cách của mk đúng đâu
ai nhanh mik