K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2015

????????????????????????/

8 tháng 10 2015

Ta có: AE vuông góc với AC nên góc EAC=900

Có AD vuông góc với AB nên góc BAD=900

Xét TG DAE và TG CAB có:

AD=AB(GT)

AC=AE(GT)

EAC=BAD=900(C/M trên)

do đó, TG DAE=TG CAB(c.g.c)

=>Góc DEA=góc CAB

có: góc EAC+góc EAD=1800(2 góc kề bù)

hay 900+góc EAD=1800

=>góc EAD=1800-900=900

=>Góc DEA=góc CAB=900

=>BE vuông góc với CD

Vậy _______________________

thật ra cách của mk ngắn hơn v nhưng để xét 2 cái cho chắc nên làm cả 2 góc dea vs cab luôn

cậu tự vẽ hình đi, mk ko chắc chắn cách của mk đúng đâu

 

1 tháng 1 2021

a)   ta có :∠EAC=90(gt)

                ∠BAD=90o(gt)

=>∠EAC+∠BAC=∠BAD+∠BAC

=>∠EAB=∠DAC

Xét △ADC và △ABC,có:

AD=AB(gt)

∠CAB=∠EAB(cmt)

AE=AC(gt)

=>△ADC=△ABE(c.g.c)

=>BE=DC(t/ư)

4 tháng 9 2016

Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 7 - Học toán với OnlineMath

21 tháng 12 2017

GT | ΔABC, \(\widehat{A}< 90^o\)

Ax ⊥ AB, AD = AB

Ay ⊥ AC, AE = AC

KL | a, BE=CD

b, BE ⊥ CD

Toán lớp 7

Giải:

a, Vì Ay ⊥ AB

⇒ A1 = 90o <1>

Ax ⊥ AC

⇒ A2 = 90o <2>

Từ <1>,<2> ⇒ A1=A2

\(\widehat{DAC}\) = \(\widehat{A_1}+ \widehat{A_3}\);

\(\widehat{EAC} = \widehat{A_2} + \widehat{A_3}\).

\(\widehat{DAC}\)​ = \(\widehat{EAC}\)

Xét ΔDAC và ΔEAB có:

AD = AB (gt)

A1= A2= \(90^o\)

AE =AC (gt)

⇒ ΔDAC = ΔEAB(c.g.c)

b, Vì ΔDAC = ΔEAB(CMT)

⇒ BE⊥ CD( 2 cạnh tương ứng)

Chức bạn học tốt nha! hihi

a: Ta có: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=\widehat{BAC}+90^0\)

\(\widehat{CAD}=\widehat{CAB}+\widehat{DAB}=\widehat{BAC}+90^0\)

Do đó: \(\widehat{BAE}=\widehat{CAD}\)

Xét ΔBAE và ΔDAC có

AB=AD

\(\widehat{BAE}=\widehat{DAC}\)

AE=AC

DO đó: ΔBAE=ΔDAC

=>BE=DC

b: Gọi giao điểm của BE và CD là H

Ta có: ΔBAE=ΔDAC

=>\(\widehat{ABE}=\widehat{ADC};\widehat{AEB}=\widehat{ACD}\)

Xét tứ giác AHBD có \(\widehat{ADH}=\widehat{ABH}\)

nên AHBD là tứ giác nội tiếp

=>\(\widehat{DHA}=\widehat{DBA}=45^0\)

Xét tứ giác AHCE có \(\widehat{AEH}=\widehat{ACH}\)

nên AHCE là tứ giác nội tiếp

=>\(\widehat{AHE}=\widehat{ACE}=45^0\)

\(\widehat{DHE}=\widehat{DHA}+\widehat{EHA}=45^0+45^0=90^0\)

=>EB\(\perp\)CD tại H

11 tháng 12 2020

Bạn tham khảo tạm.

Gọi M là trung điểm BC. Trên tia đối tia MA lấy điểm F sao cho M là trung điểm AF. AM cắt EF tại K

Dễ dàng ∆ABM = ∆FCM (c.g.c)

=> ^ABM = ^FCM (2 góc t.ứ)và AB = FC

Mà 2 góc này ở vị trí slt.

=> AB // FC.

=>^BAC + ^ACF = 180° (tcp).

Lại có:

^EAC = ^DAB = 90°

=> ^EAC + ^DAB = 180°

=> ^EAB + ^BAC + ^BAC + CAD = 180°

=> ^BAC + ^EAD = 180°

Do đó ^EAD = ^ACF.

Xét ∆ACF và ∆EAD có:

AC = AE (GT)

^ACF = ^EAD 

^CF = AD (=AB)

=>∆ACF = ∆EAD (c.g.c)

=> ^CAK = ^AED (2 góc t/ứ)

=> ^CAM+ ^EAM = ^AED + ^EAM

=> ^AED + ^EAM = ^CAE=90°

=> ^AKE = 90°

=> AM vuông góc vs DE

Mà AH vuông góc DE.

=> Đpcm

19 tháng 1 2024

Ngộ nhận một cách ngu ngốc

 

21 tháng 8 2023

Để chứng minh rằng BD = CE và BD vuông góc với CE, ta sẽ sử dụng một số kiến thức về tam giác và hình học.

a) Để chứng minh BD = CE, ta sẽ sử dụng tính chất của tam giác vuông. Vì AD = AC và góc BAD = góc CAE = 90 độ, nên tam giác ABD và tam giác ACE là hai tam giác vuông cân. Do đó, ta có AB = AC và góc ABD = góc ACE. Từ đó, ta có thể kết luận rằng BD = CE.

b) Để chứng minh BD vuông góc với CE, ta sẽ sử dụng tính chất của đường thẳng vuông góc. Vì AD vuông góc AC và AE vuông góc AB, nên ta có thể kết luận rằng đường thẳng BD là đường thẳng vuông góc với đường thẳng CE.

Với các bước chứng minh trên, ta đã chứng minh được rằng BD = CE và BD vuông góc với CE trong tam giác ABC nhọn.