K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

a) Xét \(\Delta ABC\) vuông tại A có AH là đường trung tuyến ứng với cạnh huyền BC

\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow5=\dfrac{1}{2}BC\Rightarrow BC=10\left(cm\right)\)

Xét \(\Delta ABC\) vuông tại A có \(\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}=0.6\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\sin B=\sin53^o\approx0.8=\dfrac{AH}{AB}=\dfrac{AH}{6}\Rightarrow AH=4,8\left(cm\right)\)

2 tháng 11 2018

b) Xét \(\Delta ABH\) vuông tại H: \(BH=AB.\cos B\)

Tương tự: \(HC=AC.\cos C\)

Cộng hai vế của hai đẳng thức trên, ta được điều phải chứng minh

16 tháng 6 2019

a) Nếu \(AM\perp DE\) thì ADME là hình vuông, suy ra AD = AE

Suy ra AB = AC

Áp dụng định lí Pytago vào hai tam giác vuông ABH và ACH, ta thấy AB < AC

Vậy KHÔNG thể chứng minh được :|

22 tháng 3 2020
https://i.imgur.com/5CjdwFU.jpg
2 tháng 8 2018

1)

a) trong tam giac ABC vuong tai A co 

+)BC2=AB2+AC2

suy ra AC=12cm

+)AH.BC=AB.AC

suy ra AH=7,2cm

b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm

suy ra MN=7,2cm

c) goi O la giao diem cu MN va AH 

Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm

suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB 

Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC

suy ra tam giac AKB can tai K

suy ra goc B= goc BAK

Ta co goc B+ goc BAH=90 do 
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)

2 tháng 8 2018

bai 2 sai de ban oi sinx hay cosx chu ko phai sin hay cos

10 tháng 9 2020

A B C

a, Xét tam giác ABC vuông tại A, áp dụng định lí Pytago ta có:

BC= AB2 + AC2

BC= 21+ 722

BC= 5625

BC = 75 (cm)

b, Tam giác ABC vuông tại A, đường cao AH

Ta có: AB2 = BH . BC (định lí 1)

           212 = BH . 75

           BH = 441 : 75

           BH = 5,88 (cm)

Ta có : BC = BH + HC

            75 = 5,88 + HC

            HC = 75 - 5,88

            HC = 69,12 (cm)

Ta có: AH2 = BH . HC

          AH2 = 5,88 . 69,12

          AH2 = 406,4256

          AH = 20,16 (cm)

c, (Bạn tự vẽ tia p/g nha)

Theo tính chất đường phân giác góc B ta có:

=> AD/ DC = AB/ BC

=> AD/ AB = DC/BC

=> AD/ 21 = DC/ 75

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

AD/21 = DC/ 75 = AD + DC/ 21 + 75 = AC/ 96 = 72/ 96 = 3/4

=> AD/ 21 = 3/4 => AD = 15,75 (cm)

=> DC/ 75 = 3/4 => DC = 56, 25 (cm)

Mình không biết bạn có đánh sai số hay không mà số chênh nhau lớn quá, nếu bạn đánh sai thì chỉ cần thay số trong bài mình làm cho bạn là được nha :33

CHÚC BẠN HỌC TỐT !!!

18 tháng 6 2019

a/ Có tứ giác MHNA là hcn\(\Rightarrow\widehat{AMN}=\widehat{AHN}\) (góc nt cùng chắn \(\stackrel\frown{AN}\))

\(\widehat{AHN}=\widehat{ACH}\) (cùng phụ vs \(\widehat{HAN}\))

\(\Rightarrow\widehat{AMN}=\widehat{ACH}\)

Xét \(\Delta AMN\)\(\Delta ACB\) có:

\(\widehat{AMN}=\widehat{ACH}\left(CMT\right)\)

\(\widehat{MAN}\) : góc chung

\(\Rightarrow\Delta AMN\sim\Delta ACB\left(gg\right)\)

\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\Leftrightarrow AM.AB=AN.AC\)

b/ Có \(HB=\frac{AB^2}{BC}\)

\(HC=\frac{AC^2}{BC}\)

\(\Rightarrow\frac{HB}{HC}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)

c/ Xét \(\Delta AHB\) vuông tại H,\(MH\perp AB\)

\(\Rightarrow MA.MB=MH^2\)(1)

tương tự\(\Rightarrow NA.NC=HN^2\) (2)

\(HB.HC=AH^2=MN^2\) (2 đường chéo bằng nhau)(3)

Xét \(\Delta MHN\) vuông tại H

\(\Rightarrow MH^2+HN^2=MN^2=AH^2\)(4)

Từ (1),(2),(3),(4)\(\Rightarrow HB.HC=MA.MB+NA.NC\)