K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

a, ABD đồng dạng ACE (g.g) (có chung góc A và cùng có 1 góc vuông)

b, từ câu a => AD/AB = AE/AC

2 tam giác có chung góc A => đồng dạng  (c.g.c)

27 tháng 9 2020

Ta có: SAED = 1/14SABC => ED = 1/14BC

SAFD = 7/50SABC => FD = 7/50BC

=> EC = ED + DC = 1/14BC + 1/2BC = 4/7BC và EB = BC - EC = 3/7BC

=> EB/EC = 3/4 => AB/AC = 3/4 (= EB/EC, theo tính chất đường phân giác trong tam giác)

Hơn nữa SABF = SABD - SAFD = 1/2SABC - 7/50SABC = 9/25SABC

SACF = SACD + SAFD = 1/2SABC + 7/50SABC = 16/25SABC

=> SABF/SACF = 9/16 => FM/FN = 3/4 (với M, N là các chân đường cao hạ từ F xuống AB và AC)

Gọi I, J lần lượt là trung điểm các cạnh AB, AC

Các tam giác ∆ABF và ∆AFC vuông tại F => FI = 1/2AB, FJ = 1/2AC => FI/FJ = AB/AC = 3/4

Từ đó FM/FN = FI/FJ => ∆MIF ~ ∆NJF (ch - cgv) => ^MIF = ^NJF

Mà ∆IBF cân tại I, ∆AJF cân tại J

=> ^IFB = ^FAJ            (1)

∆IAF cân tại I => ^IFA = ^IAF                   (2)

Từ (1) và (2) suy ra ^IAF + ^FAJ = ^IFA + ^IFB = 900 => ^BAC = 900.

7 tháng 5 2021

a) Vì tứ giác ABCD là hình thang vuông 

=> AB song song CD

=> góc ABD = góc BDC

Xét tam giác ABD và tam giác BDC có:

góc BAD = góc CBD (=90*)

Góc ABD = Góc BDC ( cmt)

=> tam giác ABD đồng dạng tam giác BDC (g.g)

b) Vì tam giác ABD vuông tại A nên theo ĐL Py-ta-go ta có:

  BD2 = AB2 + AD2

=> BD2 = 4+ 32

=> BD= 25

=> BD = 5 (cm)

Vì tam giác ABD đồng dạng tam giác BDC ( cm ý a)

=> AB/BD = BD/DC ( 2 cặp cạnh tương ứng)

=> 4/5 = 5/DC

=> DC = 6,25

8 tháng 5 2021

c) Kẻ \(AH\perp BD\).

Dẽ thấy:  \(\frac{S_{ADE}}{S_{ABD}}=\frac{\frac{AH.DE}{2}}{\frac{AH.BD}{2}}=\frac{DE}{BD}\).

Vì \(AB//CD\)( do hình thang ABCD vuông tại A và D).

Và E là giao điểm của AC và BD.

\(\Rightarrow\frac{DE}{BE}=\frac{CD}{AB}\)(hệ quả của dịnh lí Ta-lét).

\(\Rightarrow\frac{DE}{BE}=\frac{6,25}{4}=\frac{25}{16}\)(thay số).

\(\Rightarrow\frac{DE}{BE+DE}=\frac{25}{16+25}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{DE}{BD}=\frac{25}{41}\).

Do đó \(\frac{S_{ADE}}{S_{ABD}}=\frac{25}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.S_{ABD}}{41}=\frac{25.\frac{AB.AD}{2}}{41}=\frac{25.\frac{4.3}{2}}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.6}{41}=\frac{150}{41}\left(cm^2\right)\).
vậy \(S_{ADE}=\frac{150}{41}cm^2\).