Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A ; Ta có : góc ADB=góc AEC=90 độ( đề cho)
góc BAC ( chung)
vậy tam giác ABD đồng dạnh với tam giác ACE ( góc - góc)
B; Xét tam giác EHB và tam giác BCH có:
góc CBH = góc BEH=90 độ
Theo phần a ta lại có góc : EBH=ACE( định lí ta/lét)
vậy suy ra tam giác EHB đồng dạng với tam giác DHC ( góc - góc)
dựa theo 2 tam giác đồng dạng ta có tỉ lệ:
EH/HD=BH/HC ( Ta -lét)
EH*HC=BH*HD( ĐPCM)
C; Theo phần a ta có :
tam giác ABD đồng dạng với tam giác ACE:
suy ra : AB/AD=EA/AC( theo định lí tam giác đồng dạng )
góc A chung
vậy tam giác AED đồng dạng với tam giác ABC ( cạnh -góc -cạnh)
B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
Do đo: ΔABD\(\sim\)ΔACE
b: Xét ΔBEH vuông tại E và ΔBDA vuông tại D có
góc EBH chung
Do đó: ΔBEH\(\sim\)ΔBDA
Suy ra: BE/BD=BH/BA
hay \(BE\cdot BA=BH\cdot BD\)
c: Ta có: ΔABD\(\sim\)ΔACE
nên AD/AE=AB/AC
=>AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
DO đó: ΔADE\(\sim\)ΔABC
a) Xét\(\Delta\) ADB và \(\Delta\)ACE có:
Góc A chung
Góc D = Góc E (=900)
\(\Rightarrow\)\(\Delta\)ADN \(\infty\) \(\Delta\)ACE ( g.g )
b) Xét \(\Delta\)HEB và \(\Delta\)HDC có:
Góc ABD = Góc ACE ( CM ý a)
Góc E = Góc D ( =900)
\(\Rightarrow\)\(\Delta\)HEB\(\infty\) \(\Delta\)HDC ( g.g )
\(\Rightarrow\) \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\) \(\Rightarrow\) HE.HC = HB.HD
c) Xét AFC và IFC có:
Góc C chung
Góc F = Góc I ( = 900 )
\(\Rightarrow\Delta AFC\infty\Delta FIC\left(g.g\right)\)
\(\Rightarrow\dfrac{AF}{IF}=\dfrac{FC}{IC}\Rightarrow\dfrac{AF}{FC}=\dfrac{IF}{IC}\)