\(\Delta ABC\) nhọn có hai đường cao BD, CE cắt nhau tại H

a) Chứng minh 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

A ; Ta có : góc ADB=góc AEC=90 độ( đề cho) 

                góc BAC ( chung)

  vậy tam giác ABD đồng dạnh với tam giác ACE ( góc - góc)

B; Xét tam giác EHB và tam giác BCH có:

  góc CBH = góc BEH=90 độ

    Theo phần a ta lại có góc : EBH=ACE( định lí ta/lét)

        vậy suy ra tam giác EHB đồng dạng với tam giác DHC ( góc - góc)

  dựa theo 2 tam giác đồng dạng ta có tỉ lệ:

           EH/HD=BH/HC ( Ta -lét)

          EH*HC=BH*HD( ĐPCM)

 C; Theo phần a ta có :

 tam giác ABD đồng dạng với tam giác ACE:

suy ra : AB/AD=EA/AC( theo định lí tam giác đồng dạng )

 góc A chung

 vậy tam giác AED đồng dạng với tam giác ABC ( cạnh -góc -cạnh)

     

12 tháng 8 2020

B C A E D F H

Bài làm:

a) Δ EHB ~ Δ DHC (g.g) vì:

\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)

\(\widehat{BEH}=\widehat{CDH}=90^0\)

=> đpcm

b) Theo phần a, 2 tam giác đồng dạng

=> \(\frac{HE}{HB}=\frac{HD}{HC}\)

Δ HED ~ Δ HBC (c.g.c) vì:

\(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)

\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)

=> đpcm

c) Δ ABD ~ Δ ACE (g.g) vì:

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(\widehat{A}\) chung

=> \(\frac{AD}{AE}=\frac{AB}{AC}\)

Δ ADE ~ Δ ABC (c.g.c) vì:

\(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)

\(\widehat{A}\) chung

=> đpcm

d) Gọi F là giao của AH với BC

Δ BHF ~ Δ BCD (g.g) vì:

\(\widehat{BFH}=\widehat{BDC}=90^0\)

\(\widehat{B}\) chung

=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)

Tương tự ta chứng minh được:

\(CH.CE=FC.BC\left(2\right)\)

Cộng vế (1) và (2) lại ta được:

\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)

=> đpcm

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

Do đo: ΔABD\(\sim\)ΔACE

b: Xét ΔBEH vuông tại E và ΔBDA vuông tại D có

góc EBH chung

Do đó: ΔBEH\(\sim\)ΔBDA
Suy ra: BE/BD=BH/BA

hay \(BE\cdot BA=BH\cdot BD\)

c: Ta có: ΔABD\(\sim\)ΔACE
nên AD/AE=AB/AC

=>AD/AB=AE/AC

Xét ΔADE và ΔABC có 

AD/AB=AE/AC

góc DAE chung

DO đó: ΔADE\(\sim\)ΔABC

9 tháng 5 2017

Đề kiểm tra HK2 của bạn đây ak lớp 8 ak

9 tháng 5 2017

ukm

22 tháng 4 2017

a) Xét\(\Delta\) ADB và \(\Delta\)ACE có:

Góc A chung

Góc D = Góc E (=900)

\(\Rightarrow\)\(\Delta\)ADN \(\infty\) \(\Delta\)ACE ( g.g )

b) Xét \(\Delta\)HEB và \(\Delta\)HDC có:

Góc ABD = Góc ACE ( CM ý a)

Góc E = Góc D ( =900)

\(\Rightarrow\)\(\Delta\)HEB\(\infty\) \(\Delta\)HDC ( g.g )

\(\Rightarrow\) \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\) \(\Rightarrow\) HE.HC = HB.HD

c) Xét AFC và IFC có:

Góc C chung

Góc F = Góc I ( = 900 )

\(\Rightarrow\Delta AFC\infty\Delta FIC\left(g.g\right)\)

\(\Rightarrow\dfrac{AF}{IF}=\dfrac{FC}{IC}\Rightarrow\dfrac{AF}{FC}=\dfrac{IF}{IC}\)