Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chug
Do đó: ΔHBA\(\sim\)ΔABC
Suy ra: BH/BA=BA/BC
hay \(AB^2=BH\cdot BC\)
d: Xét ΔBAC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
a) Xét tam giác ABC và tam giác HBA có :
∠ABC chung
∠BAC=∠BHA = 90
=> ΔABC ∼ ΔHBA (g.g)
b)Vì ΔABC ∼ ΔHBA
=> AB/BC = HB/BA (cặp cạnh tỉ lệ tương ứng)
=> AB^2 = BC.BH (tính chất tỉ lệ thức)
c) Áp dụng định lý Pytago vào tam giác ABC vuông tại A có :
BC^2= AB^2 +AC^2 = 9^2+12^2=225
=> BC=15
Vì AB^2= BC.BH
=> 9^2 = 15.BH =>BH = 5,4
Mà BH + CH = BC=15
=> CH = 9,6
Áp dụng định lý Pytago vào tam giác ABH vuông tại H có :
AB^2= AH^2+BH^2
=> AH^2 = AB^2 -BH^2 = 9^2 - 5,4^2 = 51,84
=> AH = 7,2
d) Vì BD là phân giác góc B
=> AD/DC = AB/BC (tính giác phân giác trong tam giác)
=> AD/AB = DC/BC = (AD+DC)/(AB+BC)= AC/(AB+BC)= 12/(9+15)=0,5 (tính chất tỉ lệ thức)
=> AD = 0,5 . AB = 0,5 . 9 =4,5
DC = 0,5 . BC = 0,5 . 15 =7,5
Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{BAC}=\widehat{BHA}=90^0$
$\widehat{B}$ chung
$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)
b.
Từ tam giác đồng dạng trên ta suy ra:
$\frac{AB}{HB}=\frac{BC}{BA}\Rightarrow AB^2=HB.BC$
c.
$BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15$ (cm)
$HB=\frac{AB^2}{BC}=\frac{9^2}{15}=5,4$ (cm)
$CH=BC-HB=15-5,4=9,6$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2$ (cm)
d.
Theo tính chất tia phân giác: $\frac{AD}{DC}=\frac{AB}{BC}=\frac{9}{15}=\frac{3}{5}$
$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$
$\Rightarrow AD=\frac{3}{8}AC=4,5$ (cm)
$CD=AC-AD=12-4,5=7,5$ (cm)
1. \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{3}{2}\end{cases}}\)
Vậy \(S=\left\{5;\frac{3}{2}\right\}\)
A B C H 9cm 12cm K I
a. Xét \(\Delta ABC\)và \(\Delta HAC\)có:
Góc C: chung (gt)
Góc HAC = Góc ABC ( cùng phụ với góc ACB)
\(\Rightarrow\Delta ABC\infty\Delta HAC\)
b.Ta có: \(\Delta ABC\infty\Delta HAC\)(cmt)
\(\Rightarrow\frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC=\left(BH+HC\right).HC=\left(9+12\right).12=252cm.\Rightarrow AC=\sqrt{252}=6\sqrt{7}\)
a, Xét ΔABC và ΔHBA có:
∠BAC chung, ∠BHA=∠BAC (=90o)
=> ΔABC ∼ ΔHBA (g.g)
b, Áp dụng đ/l Pitago vào △ABC ta có:
BC2=AB2+AC2 => BC=√(62+82)=10 (cm)
Ta có: SABC=\(\dfrac{1}{2}\)AB.AC=\(\dfrac{1}{2}\)AH.BC
=> 6.8=AH.10 => AH=4,8 (cm)
c, Xét △HAB và △HCA có:
∠BHA=∠CHA (=90o), ∠ABC=∠HAC (cùng phụ ∠BCA)
=> △HAB ∼ △HCA (g.g)
=> \(\dfrac{AB}{AC}=\dfrac{\text{△HAB}}{\text{△HCA}}\)=\(\dfrac{6}{8}\)=\(\dfrac{3}{4}\)
d, AD là đường p/g của △ABC => \(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)=\(\dfrac{AB+AC}{BD+DC}=\dfrac{14}{10}=\dfrac{7}{5}\)
=> \(\dfrac{AB}{BD}=\dfrac{7}{5}\) => \(\dfrac{6}{BD}=\dfrac{7}{5}\) => BD=\(\dfrac{30}{7}\) (cm)
=> \(\dfrac{AC}{DC}\)\(=\dfrac{7}{5}\) => \(\dfrac{8}{DC}=\dfrac{7}{5}\) => DC=\(\dfrac{40}{7}\) (cm)