Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta ABC=\Delta DEF\)
nên AB = DE = 4cm;
BC = EF = 6cm;
AC = DF = 5cm
Khi đó: \(P_{\Delta ABC}=P_{\Delta DEF}=4+5+6=15\left(cm\right)\)
Vậy \(P_{\Delta ABC}=P_{\Delta DEF}=15cm.\)
a: ΔABC và ΔEFD
Để ΔABC=ΔEFD theo trường hợp c-g-c thì BC=FD
b: ΔABC=ΔEFD
nên AB=EF=5cm; AC=ED=6cm; BC=FD=6cm
=>\(C_{ABC}=C_{EFD}=5+6+6=17\left(cm\right)\)
A B H C 13 12 16
Chứng minh :
Xét △AHB vuông tại H ( gt ) có :
\(AB^2=AH^2+BH^2\) ( định lí Py - ta - go )
\(\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=13^2-12^2\)
\(\Rightarrow BH^2=25\)
\(\Rightarrow BH=5\left(cm\right)\left(BH>0\right)\)
Có : H ϵ BC ⇒ H nằm giữa B và C
BH + HC = BC
⇒ BC = 5 + 16 = 21 ( cm )
Xét △AHC vuông tại H ( gt ) có:
\(AC^2=AH^2+HC^2\) ( đ/l Py - ta - go )
\(\Rightarrow AC^2=12^2+16^2\)
\(\Rightarrow AC^2=400\)
\(\Rightarrow AC=20\left(cm\right)\left(AC>0\right)\)
Chu vi tam giác ABC là : 13 + 21 + 20 = 54 ( cm )
Vậy chu vi tam giác ABC là 54 cm
A B C H 13 cm 12cm 16 cm ✽ △ ABC vuông tại H
Áp dụng định lý Pitago:
→AB2+ BH2= AB2
→122+BH2=132
→ BH2= 132-122
→BH2=25
→BH=5cm
✽ Vì △ AHC vuông tại H
Áp dụng định lý Pitago:
→ AH2+ HC2=AC2
→ 122+162=AC2
→AC2=122+162
→AC2=400 → AC=20 Vì H nằm giữa B,C → BH+HC=BC →5+ 16=BC →BC=5+16 →BC= 21cm ⇒ Chu vi △ ABC: AB+ AC+ BC= △ABC → 13+20+21=△ABC → △ABC=13+20+21 →△ABC= 54cm (đpcm)
Hình vẽ
Vì ΔABC = ΔDEF nên suy ra:
AB = DE = 4cm
BC = EF = 6cm
DF = AC = 5cm
Chu vi tam giác ABC bằng:
AB + BC + CA = 4 + 6 + 5 = 15 (cm)
Chu vi tam giác DEF bằng:
DE + EF + DF = 4 + 6 + 5 = 15 (cm)
Vậy...
Chúc bạn học tốt!
Bài 3 :
B A C 17 16 M
Vì M là trung điểm của AC => AM = MC = 16 : 2 = 8 ( cm )
Ta có : tam giác AMB vuông tại M
=> AB2 = AM2 + BM2 ( định lý Py - ta - go )
=> 172 = 162 + BM2
=> 289 = 256 + BM2
=> BM2 = 289 - 256
=> BM2 = 33
=> BM = căn 33 hoặc BM = căn âm 33 . Vì BM > 0 => BM = căn 33
Vậy BM = căn 33
Bài 4 :
A B C H 12 5 2 0
Ta có tam giác AHB vuông tại H
=> AB2 = AH2 + HB2
=> AB2 = 122 + 52
=> AB2 = 144 + 25
=> AB2 = 169
=> AB = 13 hoặc AB = -13 . Vì AB > 0 => AB = 13 cm
Ta có tam giác AHC vuông tại H
=> AC2 = AH2 + HC2 ( định lý Py - ta - go )
=> 202 = 122 + HC2
=> 400 = 144 + HC2
=> HC2 = 400 - 144
=> HC2 = 256
=> HC = 16 hoặc HC = -16 > Vì HC > 0 => HC = 16 cm
Chu vi tam giác ABC là :
( 16 + 5 ) + 20 + 13 = 51 ( cm )
Vậy chu vi tam giác ABC là : 51 cm
A)\(\Delta ACB=\Delta DNM\)
b) ta có : AB = DM = 3 cm
AC = DN = 4 cm
BC = MN = 6 cm
chu vi \(\Delta ABC=AB+AC+BC=3+4+6=13\left(cm\right)\)
chu vi \(\Delta DMN=DM+MN+DN=3+4+6=13\left(cm\right)\)
\(\Delta ABC=\Delta DEF\)
\(\Rightarrow\hept{\begin{cases}AB=DE\text{ ( 2 cạnh tương ứng )}\\BC=EF\text{ ( 2 cạnh tương ứng )}\\AC=DF\text{ ( 2 cạnh tương ứng )}\end{cases}}\)
\(\Rightarrow\)AB = DE = 5cm ; BC = EF = 7cm ; AC = DF = 6cm
\(\Rightarrow\)chu vi \(\Delta ABC\)là : 5 + 7 + 6 = 18 ( cm )
chu vi \(\Delta DEF\)là : 5 + 7 + 6 = 18 ( cm )
Vì tam giác ABC = tam giác DEF
=> AB = DE; BC = EF; AC = DF
Chu vi tam giác ABC là: 5 + 6 + 7 = 18 (cm) = chu vi tam giác DEF
Vậy chu vi tam giác ABC là 18 cm
chu vi tam giác DEF là 18 cm