\(\Delta\)ABC nhọn . Kẻ AH\(\perp\)BC ( H
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

A B H C 13 12 16
Chứng minh :
Xét △AHB vuông tại H ( gt ) có :
\(AB^2=AH^2+BH^2\) ( định lí Py - ta - go )
\(\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=13^2-12^2\)
\(\Rightarrow BH^2=25\)
\(\Rightarrow BH=5\left(cm\right)\left(BH>0\right)\)
Có : H ϵ BC ⇒ H nằm giữa B và C
BH + HC = BC
⇒ BC = 5 + 16 = 21 ( cm )
Xét △AHC vuông tại H ( gt ) có:
\(AC^2=AH^2+HC^2\) ( đ/l Py - ta - go )
\(\Rightarrow AC^2=12^2+16^2\)
\(\Rightarrow AC^2=400\)
\(\Rightarrow AC=20\left(cm\right)\left(AC>0\right)\)
Chu vi tam giác ABC là : 13 + 21 + 20 = 54 ( cm )
Vậy chu vi tam giác ABC là 54 cm

25 tháng 2 2018

A B C H 13 cm 12cm 16 cm ✽ △ ABC vuông tại H

Áp dụng định lý Pitago:

→AB2+ BH2= AB2

→122+BH2=132

BH2= 132-122

→BH2=25

→BH=5cm

✽ Vì △ AHC vuông tại H

Áp dụng định lý Pitago:

→ AH2+ HC2=AC2

→ 122+162=AC2

→AC2=122+162

→AC2=400 → AC=20 Vì H nằm giữa B,C → BH+HC=BC →5+ 16=BC →BC=5+16 →BC= 21cm ⇒ Chu vi △ ABC: AB+ AC+ BC= △ABC → 13+20+21=△ABC → △ABC=13+20+21 →△ABC= 54cm (đpcm)

1 tháng 2 2021

Giải:

Hình bạn tự vẽ nhé.

Xét tam giác ACH vuông tại H có:

AH2 + CH2 = AC2  (định lí Pytago)

AC2 = 122 + 162 = 400

=> AC = \(\sqrt{400}\) = 20 (cm)   (vì AC > 0)

Xét tam giác ABH vuông tại H có:

AB2 = AH2 + BH2  (định lí Pytago)

132 = 122 + BH2

=> BH2 = 132 - 122 = 25

=> BH = \(\sqrt{25}\) = 5 (cm)

Ta có: BC = BH + CH

                 = 5 + 16 = 21 (cm)

=> CABC = AB + BC + AC = 21 + 13 + 20 = 54 (cm)

Vậy CABC = 54cm.

AH
Akai Haruma
Giáo viên
10 tháng 4 2020

Hình vẽ:

Ôn tập toán 7

AH
Akai Haruma
Giáo viên
10 tháng 4 2020

Lời giải:

Áp dụng định lý Pitago cho tam giác vuông $ABH$:

$BH=\sqrt{AB^2-AH^2}=\sqrt{13^2-12^2}=5$ (cm)

$\Rightarrow BC=BH+CH=5+16=21$ (cm)

Áp dụng định lý Pitago cho tam giác vuông $ACH$:

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

Chu vi $ABC$: $AB+BC+AC=13+21+20=54$ (cm)

27 tháng 1 2021

A C B H

Áp dụng định lý Pytago ta có:

\(AC^2=AH^2+HC^2=12^2+16^2=400\)

\(\Rightarrow AC=20\left(cm\right)\)

Và \(BH^2=AB^2-AH^2=13^2-12^2=25\)

\(\Rightarrow BH=5\left(cm\right)\Rightarrow BC=BH+HC=5+16=21\left(cm\right)\)

Vậy \(\hept{\begin{cases}AC=20\left(cm\right)\\BC=21\left(cm\right)\end{cases}}\)

7 tháng 2 2016

54 cm. cần lời giải thi pm 

7 tháng 2 2016

c giải từng bước được ko

6 tháng 7 2019

A B C H D E

Xét tam giác ABH và tam giác ACH có : AH chung

AB = AC (gt)

góc AHB = góc AHC = 90 (gt)

=> tam giác ABH = tam giác ACH (ch-cgv)

=> HB = HC (đn)

b, HB = HC 

HB + HC = BC mà BC = 8 

=> HB = 8 : 2 = 4

xét tam giác ABH vuông tại H

=> AB^2 = AH^2 + HB^2 (đl Pytago)

AB = 5 ; HB = 4 (gt)

=> 5^2 = AH^2 + 4^2

=> AH^2 = 25 - 16

=> AH^2 = 9

=> AH = 3 do AH > 0

c, hỏi gì

19 tháng 1 2017

Bài 1:

B A C I 12

\(\Delta\)ABC đều nên AB = AC = BC = 12 cm

\(\widehat{ABC}\) = \(\widehat{ACB}\) hay \(\widehat{ABI}\) = \(\widehat{ACI}\)

Xét \(\Delta\)ABI vuông tại I và \(\Delta\)ACI vuông tại I có:

AB = AC (c/m trên)

\(\widehat{ABI}\) = \(\widehat{ACI}\) (c/m trên)

=> \(\Delta\)ABI = \(\Delta\)ACI (ch - gn)

=> BI = CI (2 cạnh t/ư)

mà BI + CI = 12

=> BI = CI = \(\frac{12}{2}\) = 6

Áp dụng định lý pytago vào \(\Delta\)ABI vuông tại I có:

AB2 = AI2 + BI2

=> 122 = AI2 + 62

=> AI2 = 122 - 62

=> AI2 = 108

=> AI = \(\sqrt{108}\)

Vậy AI = \(\sqrt{108}\).

19 tháng 1 2017

Bài 1:

A B C I 1 2

Giải:

Vì t/g ABC đều nên AB = AC = BC = 12 cm

Xét \(\Delta AIB,\Delta AIC\) có:

\(AB=AC\) ( do t/g ABC đều )

\(\widehat{B}=\widehat{C}\) ( do t/g ABC đều )

\(\widehat{I_1}=\widehat{I_2}=90^o\)

\(\Rightarrow\Delta AIB=\Delta AIC\)( c.huyền - g.nhọn )

\(\Rightarrow IB=IC\) ( cạnh t/ứng )

\(BC=12\left(cm\right)\)

\(\Rightarrow IB=IC=6cm\)

Trong t/g AIB, áp dụng định lí Py-ta-go có:

\(BI^2+AI^2=AB^2\)

\(\Rightarrow6^2+AI^2=12^2\)

\(\Rightarrow AI^2=108\)

\(\Rightarrow AI=\sqrt{108}\left(cm\right)\)

Vậy \(AI=\sqrt{108}cm\)

23 tháng 4 2018

Bạn tự vẽ hình nha.

a) Xét tam giác ABH và tam giác ACH

Ta có: Góc AHB = Góc AHC ( = 90 độ )

          AB = AC ( Vì tam giác ABC cân )

          Góc ABH = Góc ACH ( Vì tam giác ABC cân )

=> Tam giác ABH = Tam giác ACH ( ch-gn )

=> HB = HC ( hai cạnh tương ứng )

     Góc BAH = Góc CAH ( Hai góc tương ứng 0

=> Đpcm

b) Vì HB = HC ( câu a )

Mà BC = HB + HC

=> HB = HC = BC / 2 = 8 / 2 = 4 cm

Xét tam giác ABH vuông tại H

=> AH2 + BH2 = AB2

Hay AH2 + 42 = 52

=> AH2 = 52 - 42

=> AH2 = 9

=> AH = 3

c) Xét tam giác AHD và tam giác AHE

Ta có: Góc ADH = Góc AEH ( = 90 độ )

          AH là cạnh huyển chung

         Góc BAH = Góc CAH ( câu a )

=> Tam giác AHD = Tam giác AHE ( ch-gn )

=> HD = HE ( Hai cạnh tương ứng )

=> Tam giác HDE cân tại H

=> Đpcm

23 tháng 4 2018
bn Myy_Yukru ở phần a) xét tam giác thì bn xét có 2 góc 1 cạnh => là trg hợp c-g-c bn ak